A281760 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 14, 47, 90, 201, 374, 672, 1172, 2015, 3442, 5859, 9952, 16876, 28574, 48309, 81554, 137477, 231418, 389016, 653080, 1095019, 1833842, 3067719, 5126372, 8557988, 14273314, 23784417, 39600082, 65880265, 109518782, 181933584, 302025692
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0 ..0..0..0. .0..0..0. .0..0..0. .0..0..1. .1..1..1. .0..0..0. .1..0..0 ..0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..1..0. .0..1..0 ..1..1..0. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .1..0..0. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A281765.
Formula
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6) for n>11.
Empirical g.f.: x*(2 + 6*x - x^2 - 38*x^3 + 49*x^4 - 32*x^5 - 26*x^6 + 36*x^7 + 6*x^8 + 8*x^9 + 8*x^10) / ((1 - x)^2*(1 - x - x^2)^2). - Colin Barker, Feb 20 2019