A281761 Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 40, 152, 560, 1872, 5948, 18358, 55048, 162120, 471340, 1355236, 3862260, 10924470, 30702868, 85814996, 238711156, 661252798, 1824976204, 5020176620, 13769014596, 37664818800, 102784444960, 279880084494, 760592396664
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..1. .0..0..1..1. .0..0..1..1. .0..1..0..1. .0..0..1..1 ..1..1..1..0. .0..1..1..1. .0..0..1..1. .1..0..1..0. .0..0..0..1 ..1..1..1..1. .1..1..1..1. .1..1..0..0. .1..1..0..1. .0..0..1..0 ..1..1..1..1. .1..1..1..1. .1..1..1..0. .0..0..1..1. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A281765.
Formula
Empirical: a(n) = 7*a(n-1) -13*a(n-2) -5*a(n-3) +19*a(n-4) +21*a(n-5) +3*a(n-6) -63*a(n-7) -59*a(n-8) +83*a(n-9) +140*a(n-10) -186*a(n-11) -149*a(n-12) +197*a(n-13) +248*a(n-14) +70*a(n-15) -370*a(n-16) -268*a(n-17) +503*a(n-18) +307*a(n-19) -822*a(n-20) -226*a(n-21) +724*a(n-22) -54*a(n-23) -310*a(n-24) +156*a(n-25) +80*a(n-26) -44*a(n-27) +3*a(n-28) +9*a(n-29) for n>32
Comments