cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A281760 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 14, 47, 90, 201, 374, 672, 1172, 2015, 3442, 5859, 9952, 16876, 28574, 48309, 81554, 137477, 231418, 389016, 653080, 1095019, 1833842, 3067719, 5126372, 8557988, 14273314, 23784417, 39600082, 65880265, 109518782, 181933584, 302025692
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Examples

			Some solutions for n=4:
..0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0. .0..0..1. .1..1..1. .0..0..0. .1..0..0
..0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..1..0. .0..1..0
..1..1..0. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .1..0..0. .1..0..1
		

Crossrefs

Column 3 of A281765.

Formula

Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6) for n>11.
Empirical g.f.: x*(2 + 6*x - x^2 - 38*x^3 + 49*x^4 - 32*x^5 - 26*x^6 + 36*x^7 + 6*x^8 + 8*x^9 + 8*x^10) / ((1 - x)^2*(1 - x - x^2)^2). - Colin Barker, Feb 20 2019

A281761 Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 40, 152, 560, 1872, 5948, 18358, 55048, 162120, 471340, 1355236, 3862260, 10924470, 30702868, 85814996, 238711156, 661252798, 1824976204, 5020176620, 13769014596, 37664818800, 102784444960, 279880084494, 760592396664
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Column 4 of A281765.

Examples

			Some solutions for n=4
..0..0..0..1. .0..0..1..1. .0..0..1..1. .0..1..0..1. .0..0..1..1
..1..1..1..0. .0..1..1..1. .0..0..1..1. .1..0..1..0. .0..0..0..1
..1..1..1..1. .1..1..1..1. .1..1..0..0. .1..1..0..1. .0..0..1..0
..1..1..1..1. .1..1..1..1. .1..1..1..0. .0..0..1..1. .1..1..0..0
		

Crossrefs

Cf. A281765.

Formula

Empirical: a(n) = 7*a(n-1) -13*a(n-2) -5*a(n-3) +19*a(n-4) +21*a(n-5) +3*a(n-6) -63*a(n-7) -59*a(n-8) +83*a(n-9) +140*a(n-10) -186*a(n-11) -149*a(n-12) +197*a(n-13) +248*a(n-14) +70*a(n-15) -370*a(n-16) -268*a(n-17) +503*a(n-18) +307*a(n-19) -822*a(n-20) -226*a(n-21) +724*a(n-22) -54*a(n-23) -310*a(n-24) +156*a(n-25) +80*a(n-26) -44*a(n-27) +3*a(n-28) +9*a(n-29) for n>32

A281762 Number of nX5 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 110, 609, 2808, 12191, 49986, 201450, 795220, 3098932, 11944444, 45648773, 173194466, 653072024, 2449607050, 9146028282, 34010834368, 126024445869, 465494253234, 1714507604630, 6298717534388, 23086454425976, 84439440608072
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Column 5 of A281765.

Examples

			Some solutions for n=4
..0..1..1..0..0. .0..1..1..1..1. .0..1..1..1..1. .0..0..0..1..1
..1..0..0..1..0. .1..0..0..0..0. .1..0..0..0..0. .0..0..0..0..1
..0..1..1..0..1. .0..1..1..0..0. .0..1..1..0..0. .1..0..0..1..0
..1..0..1..1..0. .0..0..1..1..1. .1..1..1..1..1. .0..1..1..0..1
		

Crossrefs

Cf. A281765.

Formula

Empirical: a(n) = 10*a(n-1) -29*a(n-2) +2*a(n-3) +52*a(n-4) +170*a(n-5) -239*a(n-6) -674*a(n-7) +73*a(n-8) +1874*a(n-9) +1456*a(n-10) -3556*a(n-11) -2269*a(n-12) +228*a(n-13) +7955*a(n-14) -1394*a(n-15) -5270*a(n-16) -4208*a(n-17) -6664*a(n-18) +6626*a(n-19) +10430*a(n-20) +21576*a(n-21) -48939*a(n-22) +56684*a(n-23) -32865*a(n-24) +17584*a(n-25) +71780*a(n-26) -98666*a(n-27) +76825*a(n-28) -82636*a(n-29) -20094*a(n-30) -4536*a(n-31) -85926*a(n-32) -352*a(n-33) -69440*a(n-34) -14036*a(n-35) -30493*a(n-36) -20432*a(n-37) -9763*a(n-38) -14256*a(n-39) -787*a(n-40) -5248*a(n-41) -1167*a(n-42) -738*a(n-43) -218*a(n-44) +76*a(n-45) -209*a(n-46) +120*a(n-47) -16*a(n-48) for n>57

A281763 Number of nX6 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 280, 2138, 13968, 85844, 502276, 2848436, 15817652, 86332266, 465260812, 2481799950, 13127073212, 68942510184, 359901720360, 1869047959784, 9662464139924, 49753587454582, 255286283139832, 1305758265647346
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Column 6 of A281765.

Examples

			Some solutions for n=4
..0..1..1..1..0..0. .0..0..1..1..1..1. .0..0..0..1..1..1. .0..0..1..1..1..1
..1..0..0..0..1..1. .0..0..1..1..1..1. .0..0..1..1..0..0. .0..0..0..1..1..0
..0..1..0..0..1..1. .0..1..1..1..1..1. .0..1..1..0..0..0. .0..0..0..0..0..1
..0..0..0..0..0..1. .1..0..1..1..1..1. .0..0..0..1..1..1. .1..1..1..1..1..0
		

Crossrefs

Cf. A281765.

A281764 Number of nX7 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 698, 7466, 68362, 589990, 4845178, 38998648, 306847534, 2376142873, 18172170592, 137541600309, 1032205229342, 7690612680576, 56948407735784, 419460675116112, 3075312381551048, 22455267348093278, 163373533509709066
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Column 7 of A281765.

Examples

			Some solutions for n=4
..0..0..0..0..0..1..1. .0..0..0..1..1..0..1. .0..1..1..0..0..1..1
..0..0..0..0..1..1..1. .1..1..1..0..0..1..0. .1..1..1..1..0..0..1
..0..0..0..0..1..1..1. .1..1..0..0..1..0..1. .1..1..1..0..0..1..1
..0..0..0..1..1..0..0. .1..0..0..0..0..1..1. .1..1..1..0..0..1..1
		

Crossrefs

Cf. A281765.

A281766 Number of 2 X n 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 4, 14, 40, 110, 280, 698, 1696, 4052, 9564, 22330, 51728, 118998, 272228, 619804, 1405456, 3175966, 7155320, 16078698, 36048008, 80656900, 180149700, 401740002, 894646944, 1989842814, 4420825196, 9811946668, 21757950712, 48209235558
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Examples

			Some solutions for n=4:
..0..1..1..1. .0..0..0..0. .0..0..1..0. .0..1..0..0. .0..0..0..1
..0..0..0..0. .0..1..1..1. .0..1..0..1. .1..1..1..0. .0..0..0..0
		

Crossrefs

Row 2 of A281765.

Formula

Empirical: a(n) = 4*a(n-1) + a(n-2) - 16*a(n-3) - a(n-4) + 30*a(n-5) + 4*a(n-6) - 24*a(n-7) - 4*a(n-8) + 8*a(n-9).
Empirical g.f.: 2*x^2*(1 - x)*(1 + x)*(2 - x - 8*x^2 - x^3 + 6*x^4) / ((1 - 2*x)*(1 - x - 3*x^2 + 2*x^4)^2). - Colin Barker, Feb 20 2019

A281767 Number of 3Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 10, 47, 152, 609, 2138, 7466, 25798, 87397, 293470, 979311, 3235714, 10650401, 34842532, 113507950, 368400482, 1191351902, 3841448788, 12352142633, 39620840414, 126807886700, 405026431154, 1291283976919, 4109819232304
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Row 3 of A281765.

Examples

			Some solutions for n=4
..0..0..1..0. .0..0..1..1. .0..0..0..1. .0..0..1..1. .0..1..1..1
..1..1..0..0. .1..1..0..1. .1..1..1..0. .0..1..0..1. .1..1..1..1
..1..1..0..0. .0..0..1..0. .1..1..0..1. .1..0..1..1. .1..1..1..1
		

Crossrefs

Cf. A281765.

Formula

Empirical: a(n) = 6*a(n-1) +7*a(n-2) -80*a(n-3) -60*a(n-4) +610*a(n-5) +488*a(n-6) -2954*a(n-7) -2778*a(n-8) +9782*a(n-9) +10423*a(n-10) -24116*a(n-11) -27411*a(n-12) +46820*a(n-13) +54750*a(n-14) -74006*a(n-15) -87429*a(n-16) +97522*a(n-17) +114272*a(n-18) -108436*a(n-19) -124098*a(n-20) +102206*a(n-21) +112813*a(n-22) -81722*a(n-23) -85782*a(n-24) +55064*a(n-25) +54233*a(n-26) -30842*a(n-27) -28193*a(n-28) +14078*a(n-29) +11842*a(n-30) -5088*a(n-31) -3915*a(n-32) +1398*a(n-33) +977*a(n-34) -274*a(n-35) -172*a(n-36) +34*a(n-37) +19*a(n-38) -2*a(n-39) -a(n-40) for n>41

A281768 Number of 4Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 20, 90, 560, 2808, 13968, 68362, 323280, 1529974, 7114300, 32915192, 151142772, 689726508, 3133687480, 14169310798, 63838844556, 286639424578, 1283124275056, 5728711606322, 25513799290264, 113382456085042, 502859346935932
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Row 4 of A281765.

Examples

			Some solutions for n=4
..0..0..0..0. .0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..1..0
..0..1..1..1. .0..0..1..0. .0..1..0..1. .1..1..0..0. .0..1..1..1
..1..1..1..1. .0..0..0..1. .0..0..1..0. .1..1..0..0. .0..0..1..1
..1..1..1..1. .0..0..1..1. .0..0..0..1. .1..1..0..0. .0..0..0..1
		

Crossrefs

Cf. A281765.

A281769 Number of 5Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 38, 201, 1872, 12191, 85844, 589990, 3845590, 25703392, 166880128, 1080273873, 6965900750, 44487321221, 283503705456, 1797488483677, 11352536170284, 71500155029453, 448832589255878, 2810514285498993, 17557109431928644
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Row 5 of A281765.

Examples

			Some solutions for n=4
..0..0..0..0. .0..0..0..1. .0..1..1..1. .0..0..1..1. .0..0..1..1
..1..1..1..1. .1..1..1..1. .0..0..1..0. .0..0..1..1. .0..0..1..1
..1..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .0..0..1..1. .0..0..1..0. .1..1..0..1. .1..1..0..0
..0..0..1..1. .0..0..0..0. .1..1..0..1. .1..1..1..1. .1..0..0..0
		

Crossrefs

Cf. A281765.

A281770 Number of 6Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 68, 374, 5948, 49986, 502276, 4845178, 43943360, 414035752, 3763905492, 34161108524, 309491219676, 2770210355448, 24781891977992, 220487430433918, 1953506661837984, 17268182347051482, 152093095781502104
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Row 6 of A281765.

Examples

			Some solutions for n=4
..0..0..0..0. .0..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0
..0..0..0..1. .1..0..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..0..1..1. .1..1..0..1. .0..0..1..1. .1..1..1..0. .1..1..0..0
..0..0..1..1. .0..0..1..0. .0..1..1..1. .1..1..0..1. .1..1..1..0
..1..1..0..0. .0..0..0..1. .1..0..1..0. .1..0..1..0. .1..1..0..1
..1..1..0..0. .0..0..1..1. .0..1..0..1. .1..1..0..1. .1..1..1..1
		

Crossrefs

Cf. A281765.
Showing 1-10 of 11 results. Next