A281766 Number of 2 X n 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 4, 14, 40, 110, 280, 698, 1696, 4052, 9564, 22330, 51728, 118998, 272228, 619804, 1405456, 3175966, 7155320, 16078698, 36048008, 80656900, 180149700, 401740002, 894646944, 1989842814, 4420825196, 9811946668, 21757950712, 48209235558
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1..1. .0..0..0..0. .0..0..1..0. .0..1..0..0. .0..0..0..1 ..0..0..0..0. .0..1..1..1. .0..1..0..1. .1..1..1..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A281765.
Formula
Empirical: a(n) = 4*a(n-1) + a(n-2) - 16*a(n-3) - a(n-4) + 30*a(n-5) + 4*a(n-6) - 24*a(n-7) - 4*a(n-8) + 8*a(n-9).
Empirical g.f.: 2*x^2*(1 - x)*(1 + x)*(2 - x - 8*x^2 - x^3 + 6*x^4) / ((1 - 2*x)*(1 - x - 3*x^2 + 2*x^4)^2). - Colin Barker, Feb 20 2019