This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281774 #42 Aug 03 2021 15:11:04 %S A281774 0,0,0,6,72,630,4680,31206,193032,1131990,6386760,35025606,188061192, %T A281774 993760950,5187840840,26831095206,137770476552,703455087510, %U A281774 3576115150920,18117222864006,91536570671112,461496288791670,2322770028381000,11675109032796006 %N A281774 Number of distinct topologies on an n-set with exactly 6 open sets. %H A281774 Colin Barker, <a href="/A281774/b281774.txt">Table of n, a(n) for n = 0..1000</a> %H A281774 Moussa Benoumhani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Benoumhani/benoumhani11.html">The Number of Topologies on a Finite Set</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6. %H A281774 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-85,225,-274,120). %F A281774 a(n) = 3! Stirling2(n, 3) + 3/2*4! Stirling2(n, 4) + 5! Stirling2(n, 5). %F A281774 From _Colin Barker_, Jan 30 2017: (Start) %F A281774 a(n) = 2 - 2^(2+n) - 7*2^(2*n-1) + 5*3^n + 5^n for n>5. %F A281774 a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n>5. %F A281774 G.f.: 6*x^3*(1 - 3*x + 10*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)). %F A281774 (End) %t A281774 LinearRecurrence[{15,-85,225,-274,120},{0,0,0,6,72,630},30] (* _Harvey P. Dale_, Oct 22 2018 *) %o A281774 (PARI) a(n) = 3!*stirling(n, 3, 2) + 3*4!*stirling(n, 4, 2)/2 + 5!*stirling(n, 5, 2) \\ _Colin Barker_, Jan 30 2017 %o A281774 (PARI) concat(vector(3), Vec(6*x^3*(1 - 3*x + 10*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)) + O(x^30))) \\ _Colin Barker_, Jan 30 2017 %Y A281774 The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780. %K A281774 nonn,easy %O A281774 0,4 %A A281774 Submitted on behalf of Moussa Benoumhani by _Geoffrey Critzer_, Jan 29 2017