cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281792 Primes of the form x^2 + p^4 where x > 0 and p is prime.

Original entry on oeis.org

17, 41, 97, 137, 181, 241, 277, 337, 457, 641, 661, 757, 769, 821, 857, 881, 977, 1109, 1201, 1237, 1301, 1409, 1697, 2017, 2069, 2389, 2417, 2437, 2617, 2657, 2741, 2801, 3041, 3217, 3301, 3329, 3541, 3557, 3697, 3761, 3989, 4001, 4177, 4241, 4337, 4517, 4721, 5557, 5641, 5857, 6101, 6257, 6481, 6577
Offset: 1

Views

Author

Robert Israel, Jan 30 2017

Keywords

Comments

Heath-Brown and Li prove an asymptotic formula for the number of terms <= x, in particular showing that the sequence is infinite.

Examples

			17 = 1^2 + 2^4
41 = 5^2 + 2^4
97 = 9^2 + 2^4
137 = 11^2 + 2^4
181 = 10^2 + 3^4
		

Crossrefs

Subsequence of A028916.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    A:= select(isprime, {seq(seq(x^2+y^4, x=1..floor(sqrt(N-y^4))),
    y=select(isprime, [$1..floor(N^(1/4))]))}):
    sort(convert(A,list)); # Robert Israel, Jan 30 2017
  • Mathematica
    nn = 10000;
    Select[Table[x^2+y^4, {y, Select[Range[nn^(1/4)], PrimeQ]}, {x, Sqrt[nn-y^4 ]}] // Flatten, PrimeQ] // Union (* Jean-François Alcover, Sep 18 2018, after Robert Israel *)
  • PARI
    list(lim)=if(lim<17, return([])); my(v=List(),p4,t); forstep(a=1,sqrtint(-16+lim\=1),2, if(isprime(t=a^2+16), listput(v,t))); forprime(p=3,sqrtnint(lim-4,4), p4=p^4; forstep(a=2,sqrtint(lim-p4),2, if(isprime(t=p4+a^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 13 2017

Formula

Heath-Brown and Li prove that there are c*x^(3/4)/log^2 x terms up to x, where c = 4*nu*J = 4.79946121442200811438003177..., nu = A199401, and J = A225119. - Charles R Greathouse IV, Aug 21 2017