A281795 Number of unit squares (partially) covered by a disk of radius n centered at the origin.
0, 4, 16, 36, 60, 88, 132, 172, 224, 284, 344, 416, 484, 568, 664, 756, 856, 956, 1076, 1200, 1324, 1452, 1600, 1740, 1884, 2040, 2212, 2392, 2560, 2732, 2928, 3120, 3332, 3536, 3748, 3980, 4192, 4428, 4660, 4920, 5172, 5412, 5688, 5956, 6248, 6528, 6804, 7104, 7400, 7716
Offset: 0
Examples
a(4) = 4 * 15 = 60 because in the positive quadrant 15 unit squares are covered and the problem is symmetrical. In the bounding box of the circle only the unit squares in the corners are not (partially) covered, so a(4) = 8*8 - 4 = 60.
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
N:= 100: # for a(0)..a(N) V:=Array(0..N): for i from 0 to N do for j from 0 to i do r:= sqrt(i^2 + j^2); if r::integer then r:= r+1 else r:= ceil(r) fi; if r > N then break fi; if i=j then m:= 4 else m:= 8 fi; V[r..N]:= V[r..N] +~ m; od od: convert(V,list); # Robert Israel, Feb 21 2025
-
Mathematica
A281795[n_] := 4*Sum[Ceiling[Sqrt[n^2 - k^2]], {k, 0, n-1}]; Array[A281795, 100, 0] (* Paolo Xausa, Feb 21 2025 *)
-
Octave
a = @(n) 4*sum(ceil(sqrt(n.^2-(0:n-1).^2))); % Luis Mendo, Aug 09 2021
-
Python
a = lambda n: sum(4 for x in range(n) for y in range(n) if x*x + y*y < n*n)
Formula
a(n) = Sum_{k=0..n-1} 4*ceiling(sqrt(n^2-k^2)). - Luis Mendo, Aug 09 2021
Comments