A281802 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 1, 0, 0, 0, 0, 3, 6, 9, 0, 3, 38, 75, 34, 0, 9, 157, 372, 324, 87, 0, 15, 524, 1725, 1916, 865, 194, 0, 31, 1631, 7293, 12318, 8354, 2272, 400, 0, 57, 4694, 29665, 71290, 71445, 32524, 5191, 790, 0, 108, 13006, 116539, 396185, 575062, 368408, 117401, 11141
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..0..0..1. .0..1..0..0. .0..0..1..0. .0..1..1..1 ..1..0..1..0. .1..1..1..0. .1..0..1..1. .1..1..0..1. .0..1..1..1 ..0..1..0..0. .1..1..0..0. .0..1..1..0. .1..0..1..0. .0..0..1..1 ..1..1..0..0. .0..0..1..0. .1..1..1..1. .0..0..0..1. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 8] for n>9
k=3: [order 9] for n>16
k=4: [order 44] for n>51
k=5: [order 72] for n>86
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 14]
n=3: [order 60]
Comments