This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281809 #7 Aug 07 2019 18:01:49 %S A281809 1,2,3,4,5,6,7,9,13,19,27,37,49,63,79,99,126,163,213,279,364,471,603, %T A281809 766,970,1229,1562,1992,2545,3251,4144,5266,6672,8435,10655,13462, %U A281809 17019,21527,27230,34425,43478,54846,69114,87032,109555,137889,173543,218393,274765,345544,434332,545650,685187,860105,1079402 %N A281809 Expansion of Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2. %C A281809 Total number of parts in all compositions (ordered partitions) of n into cubes (A000578). %H A281809 Alois P. Heinz, <a href="/A281809/b281809.txt">Table of n, a(n) for n = 1..10919</a> %H A281809 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %H A281809 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A281809 G.f.: Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2. %e A281809 a(10) = 19 because we have [8, 1, 1], [1, 8, 1], [1, 1, 8], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 3 + 3 + 3 + 10 = 19. %p A281809 b:= proc(n) option remember; `if`(n=0, [1, 0], add( %p A281809 (p-> p+[0, p[1]])(b(n-j^3)), j=1..iroot(n, 3))) %p A281809 end: %p A281809 a:= n-> b(n)[2]: %p A281809 seq(a(n), n=1..55); # _Alois P. Heinz_, Aug 07 2019 %t A281809 nmax = 55; Rest[CoefficientList[Series[Sum[x^i^3, {i, 1, nmax}]/(1 - Sum[x^j^3, {j, 1, nmax}])^2, {x, 0, nmax}], x]] %Y A281809 Cf. A000578, A023358. %K A281809 nonn %O A281809 1,2 %A A281809 _Ilya Gutkovskiy_, Jan 30 2017