This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281811 #11 Aug 07 2019 18:04:44 %S A281811 1,3,7,16,34,71,143,286,562,1096,2114,4054,7720,14631,27591,51834, %T A281811 97018,181030,336810,625062,1157288,2138200,3942858,7257830,13338024, %U A281811 24474978,44848232,82073852,150016328,273893503,499534495,910161570,1656786466,3013237398,5475710770,9942780954,18040712384,32711070838 %N A281811 Expansion of Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2. %C A281811 Total number of parts in all compositions (ordered partitions) of n into powers of 2 (A000079). %H A281811 Vaclav Kotesovec, <a href="/A281811/b281811.txt">Table of n, a(n) for n = 1..4000</a> %H A281811 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A281811 G.f.: Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2. %F A281811 a(n) ~ c * n / r^n, where r = 0.566123792684559918241681653033264449147... is the root of the equation Sum_{j>=0} r^(2^j) = 1 and c = 0.34432689951558638915900387175922521737229978512101795819134... . - _Vaclav Kotesovec_, Feb 17 2017 %e A281811 a(4) = 16 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 1 + 2 + 3 + 3 + 3 + 4 = 16. %p A281811 b:= proc(n) option remember; `if`(n=0, [1, 0], add( %p A281811 (p-> p+[0, p[1]])(b(n-2^j)), j=0..ilog2(n))) %p A281811 end: %p A281811 a:= n-> b(n)[2]: %p A281811 seq(a(n), n=1..55); # _Alois P. Heinz_, Aug 07 2019 %t A281811 nmax = 38; Rest[CoefficientList[Series[Sum[x^2^i, {i, 0, nmax}]/(1 - Sum[x^2^j, {j, 0, nmax}])^2, {x, 0, nmax}], x]] %t A281811 nmax = 40; Rest[CoefficientList[Series[Sum[x^(2^i), {i, 0, Floor[Log[nmax]/Log[2]] + 1}]/(1 - Sum[x^(2^j), {j, 0, Floor[Log[nmax]/Log[2]] + 1}])^2, {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Feb 17 2017 *) %Y A281811 Cf. A000079, A023359. %K A281811 nonn %O A281811 1,2 %A A281811 _Ilya Gutkovskiy_, Jan 30 2017