This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281813 #52 Jun 21 2025 13:31:43 %S A281813 3,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124,132,140,148,156, %T A281813 164,172,180,188,196,204,212,220,228,236,244,252,260,268,276,284,292, %U A281813 300,308,316,324,332,340,348,356,364,372,380,388,396,404 %N A281813 a(0) = 3, a(n) = 8*n + 4 for n > 0. %C A281813 Consider a 1 X S rectangle on an infinite grid and surround it successively with the minimum number of 1 X 1 tiles: the initial S on step 0, 2S + 6 on step 1, 2S + 14 on step 2, and so on. This sequence is case S = 3. See Ivaturi link for a connection to sieving for primes. %H A281813 Rayan Ivaturi, <a href="/A281813/a281813_1.pdf">Ripple Numbers</a> %H A281813 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A281813 G.f.: (3 + 6*x - x^2)/(1 - x)^2. %F A281813 a(n) = A017113(n) for n>0, a(0) = 3. %F A281813 a(n) = A086570(n+1) for n>=1. - _R. J. Mathar_, Jun 21 2025 %o A281813 /* %o A281813 * This Java program generates the ripple number sequences (first 11 terms) %o A281813 * for the seed values 1 to 9 %o A281813 */ %o A281813 /** %o A281813 * @author Rayan Ivaturi %o A281813 */ %o A281813 public class RippleNumbers { %o A281813 public static void main(String[] args) { %o A281813 int limit = 10; %o A281813 for (int seed = 1; seed < limit; seed++) { %o A281813 System.out.print("{" + seed); %o A281813 int base = 2 * seed + 6; %o A281813 System.out.print(", " + base); %o A281813 for (int i = 1; i < limit; i++) { %o A281813 int ripple = base + 8 * i; %o A281813 System.out.print(", " + ripple); %o A281813 } %o A281813 System.out.println("}"); %o A281813 } %o A281813 } %o A281813 } %o A281813 (PARI) a(n)=if(n>0, 8*n+4, 3) \\ _Charles R Greathouse IV_, Feb 07 2017 %Y A281813 Cf. A017113. %Y A281813 Other 'ripple sequences': A022144 (s=1), A017089 (s=2). %K A281813 nonn,easy,less %O A281813 0,1 %A A281813 _Rayan Ivaturi_, Jan 30 2017 %E A281813 Entry revised by Editors of OEIS, Feb 09 2017