This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281823 #17 Apr 13 2021 11:49:01 %S A281823 1,12,1,16,108,1,4,2,116,3,1,1,1,1,1,1,4,2,2,2,1,3,1,9,4,2,4,2,5,2,1, %T A281823 6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,2,2,1,2,1,2,2,1,2,1,3,2,1,3,1,2,3, %U A281823 3,3,2,4,3,1,4,1,1,4,2,3,2,4,2,1,2,1,4,2,6 %N A281823 Least number k such that (k-n)^2 contains k as a substring. %H A281823 Paolo P. Lava, <a href="/A281823/b281823.txt">Table of n, a(n) for n = 0..10000</a> %e A281823 a(1) = 12 because (12 - 1)^2 = 11^2 = 121 contains 12 as a substring and it is the least number with this property. %p A281823 with(numtheory): P:= proc(q) local a,b,d,j,k,n,ok; %p A281823 for n from 0 to q do for k from 1 to q do a:=ilog10(k)+1; b:=(n-k)^2; d:=ilog10((k-n)^2)-ilog10(k)+1; %p A281823 ok:=0; for j from 1 to d do if k=(b mod 10^a) then ok:=1; break; else b:=trunc(b/10); fi; od; %p A281823 if ok=1 then print(k); break; fi; od; od; end: P(10^6); %t A281823 nk[n_]:=Module[{k=1},While[SequenceCount[IntegerDigits[(k-n)^2],IntegerDigits[ k]]==0,k++];k]; Array[lnk,90,0] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 13 2021 *) %Y A281823 Cf. A018834, A281822. %K A281823 nonn,base,easy %O A281823 0,2 %A A281823 _Paolo P. Lava_, Jan 31 2017 %E A281823 Typo in definition corrected by _Harvey P. Dale_, Feb 27 2017. %E A281823 Entries, Maple code and b-file corrected at the suggestion of _Harvey P. Dale_, Feb 28 2017.