This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281825 #10 Feb 21 2017 14:41:05 %S A281825 1,1,0,-3,-2,-7,-4,-23,-6,-45,-8,655,-10,-5483,-12,929361,-14, %T A281825 -3202321,-16,221930513,-18,-4722116559,-20,968383680659,-22, %U A281825 -14717667114197,-24,2093660879252571,-26,-86125672563201235,-28,129848163681107301025,-30 %N A281825 Numerators of the binomial transform of A198631(n)/A006519(n+1) with A198631(1) = -1 instead of 1. %C A281825 What is the correct name for the rational sequence c(n) = 1, -1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, ... (a variant of the second fractional Euler numbers)? %C A281825 Its binomial transform is f(n) = 1, 1/2, 0, -3/4, -2, -7/2, -4, -23/8, -6, -45/2, -8, 655/4, -10, ... = a(n)/A006519(n+1). %F A281825 By definition f(0) - c(0), f(1) + c(1), f(2) - c(2), f(3) + c(3), ... is an autosequence of the first kind, here 1 - 1 = 0, 1/2 - 1/2 = 0, 0 - 0 = 0, -3/4 - 1/4 = -1, -2 - 0 = -2, -7/2 + 1/2 = -3, ... i.e., t(n) = 0, 0, followed by -A001477(n), not in the OEIS, but the corresponding autosequence of the second kind is: A199969 = 0, 0, -2, -3, -4, ... Hence f(n) from c(n) and t(n). %p A281825 A198631 := proc(n) %p A281825 1/(1+exp(-x)) ; %p A281825 coeftayl(%,x=0,n) ; %p A281825 numer(%*n!) ; %p A281825 end proc: %p A281825 A006519 := proc(n) %p A281825 2^padic[ordp](n,2) ; %p A281825 end proc: %p A281825 L := [seq( A198631(n)/A006519(n+1),n=0..40)] ; %p A281825 subsop(2=-1/2,L) ; %p A281825 b := BINOMIAL(%) ; %p A281825 for i from 1 to nops(b) do %p A281825 printf("%d,",numer(b[i])) ; %p A281825 end do: # _R. J. Mathar_, Feb 21 2017 %Y A281825 Cf. A001477, A006519, A198631, A199969, A209308, A238398. %K A281825 sign %O A281825 0,4 %A A281825 _Paul Curtz_, Jan 31 2017