A281826 Number of ways to write n as x^3 + 2*y^3 + 3*z^3 + p(k), where x,y,z are nonnegative integers, k is a positive integer, and p(.) is the partition function given by A000041.
1, 2, 3, 4, 5, 5, 5, 5, 4, 4, 5, 4, 5, 4, 5, 4, 4, 6, 4, 4, 5, 5, 4, 4, 6, 6, 7, 8, 6, 8, 8, 9, 7, 8, 9, 4, 5, 5, 6, 3, 6, 7, 6, 4, 6, 6, 7, 5, 7, 4, 4, 4, 4, 7, 6, 8, 7, 7, 8, 6, 5, 8, 4, 5, 5, 7, 6, 8, 11, 7, 5, 7, 6, 5, 3, 6, 4, 4, 4, 9
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0^3 + 2*0^3 + 3*0^3 + p(1). a(2) = 2 since 2 = 1^3 + 2*0^3 + 3*0^3 + p(1) = 0^3 + 2*0^3 + 3*0^3 + p(2). a(75) = 3 since 75 = 4^3 + 2*0^3 + 3*0^3 + p(6) = 3^3 + 2*1^3 + 3*2^3 + p(8) = 0^3 + 2*2^3 + 3*1^3 + p(11).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] p[n_]:=p[n]=PartitionsP[n] Do[r=0;Do[If[p[k]>n,Goto[bb]];Do[If[CQ[n-p[k]-3x^3-2y^3],r=r+1],{x,0,((n-p[k])/3)^(1/3)},{y,0,((n-p[k]-3x^3)/2)^(1/3)}];Continue,{k,1,n}];Label[bb];Print[n," ",r];Continue,{n,1,80}]
Comments