This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281905 #4 Feb 05 2017 13:17:25 %S A281905 0,0,3,3,11,17,35,49,84,124,199,280,426,594,858,1172,1654,2224,3061, %T A281905 4066,5472,7196,9543,12391,16196,20857,26921,34351,43924,55574,70419, %U A281905 88455,111142,138697,173025,214527,265895,327831,403825,495234,606755,740371,902507,1096215,1329912,1608445,1942926,2340203 %N A281905 Expansion of Sum_{i>=2} prime(i)*x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j). %C A281905 Total sum of odd prime parts in all partitions of n. %C A281905 Convolution of the sequences A000041 and A005069. %H A281905 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A281905 G.f.: Sum_{i>=2} prime(i)*x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j). %e A281905 a(5) = 11 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 5 + 3 + 3 = 11. %t A281905 nmax = 48; Rest[CoefficientList[Series[Sum[Prime[i] x^Prime[i]/(1 - x^Prime[i]), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] %Y A281905 Cf. A000041, A005069, A065091, A066186, A073118. %K A281905 nonn %O A281905 1,3 %A A281905 _Ilya Gutkovskiy_, Feb 01 2017