This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281919 #25 Jun 24 2021 00:06:08 %S A281919 1,30,46,54,63,207,394,693,694,718,20196,42664,80051,90135,91447, %T A281919 93136,207846,324121,361401,421609,797607,802702,882227,1531788, %U A281919 1788757,1789643,4028916,4176711,6692664,15643794,31794346,65335545,140005632,144311385,153364253 %N A281919 8th-power analog of Keith numbers. %C A281919 Like Keith numbers but starting from n^8 digits to reach n. %C A281919 Consider the digits of n^8. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n. %H A281919 Giovanni Resta, <a href="/A281919/b281919.txt">Table of n, a(n) for n = 1..40</a> %F A281919 207^8 = 3371031134626313601: %F A281919 3 + 3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 = 54; %F A281919 3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 = 105; %F A281919 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 + 105 = 207. %p A281919 with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); %p A281919 for n from 1 to q do b:=n^w; a:=[]; %p A281919 for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; %p A281919 for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; %p A281919 t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); %p A281919 od; if v[t]=n then print(n); fi; od; end: P(10^6,10000,4); %t A281919 (* function keithQ[ ] is defined in A007629 *) %t A281919 a281919[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 8]&]] %t A281919 a281919[10^6] (* _Hartmut F. W. Hoft_, Jun 03 2021 *) %Y A281919 Cf. A007629, A246544, A263534. %Y A281919 Cf. A274769, A274770, A281915, A281916, A281917, A281918, A281920, A281921. %K A281919 nonn,base %O A281919 1,2 %A A281919 _Paolo P. Lava_, Feb 02 2017 %E A281919 a(32) from _Jinyuan Wang_, Feb 01 2020 %E A281919 Terms a(33) and beyond from _Giovanni Resta_, Feb 03 2020