This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281938 #10 Sep 16 2017 00:29:50 %S A281938 2,4,8,16,32,64,128,256,512,82,129,4096,327,16384,32768,1249,35655, %T A281938 159,4926,283,377,502,603,799,1063,1417,1889,2518,3356,4472,5960,7944, %U A281938 10594,14124,18833,25110,33481,44641,59521,79361,105814,141084,188113,250817,334422 %N A281938 a(n) is the least k such that gcd(A006666(k), A006667(k)) = n. %C A281938 A006666: Number of halving steps to reach 1 in '3x+1' problem. %C A281938 A006667: number of tripling steps to reach 1 in '3x+1' problem. %C A281938 a(n) = 2^n for n = 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15. %C A281938 The primes in the sequence are 2, 283, 1063, 1249, 1889, 44641, ... %H A281938 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A281938 a(10) = 82 because gcd(A006666(82), A006667(82)) = gcd(70, 40) = 10, and there is no k < 82 such that gcd(A006666(k), A006667(k)) = 10. %p A281938 for n from 1 to 45 do: %p A281938 ii:=0: %p A281938 for k from 2 to 10^7 while(ii=0) do: %p A281938 m:=k:s1:=0:s2:=0: %p A281938 for i from 1 to nn while(m<>1) do: %p A281938 if irem(m,2)=0 %p A281938 then %p A281938 s2:=s2+1:m:=m/2: %p A281938 else %p A281938 s1:=s1+1:m:=3*m+1: %p A281938 fi: %p A281938 od: %p A281938 if gcd(s1,s2)=n %p A281938 then %p A281938 ii:=1:printf(`%d %d \n`,n,k): %p A281938 else %p A281938 fi: %p A281938 od: %p A281938 od: %t A281938 Function[w, First /@ Lookup[w, Function[k, If[k == {}, #, Take[#, First@ k]]]@ Complement[Range@ Max@ #, #]] &@ Keys@ w]@ KeySort@ PositionIndex@ Table[GCD[Count[NestWhileList[If[OddQ[#], 3 # + 1, #/2] &, n, # > 1 &], _?(EvenQ[#] &)], Count[Differences[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]], _?Positive]], {n, 2^16}] (* _Michael De Vlieger_, Feb 02 2017, Version 10, after _Harvey P. Dale_ at A006666 and A006667 *) %Y A281938 Cf. A006577, A006666, A006667. %K A281938 nonn %O A281938 1,1 %A A281938 _Michel Lagneau_, Feb 02 2017