This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281957 #15 Sep 08 2022 08:46:18 %S A281957 1,1,2,2,3,4,4,5,6,7,7,8,9,10,11,12,12,13,14,15,16,17,18,19,19,20,21, %T A281957 22,23,24,25,26,27,28,29,30,30,31,32,33,34,35,36,37,38,39,40,41,42,43, %U A281957 44,45,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 %N A281957 a(n) = largest k such that n has at least k partitions each containing at least k parts. %H A281957 Alois P. Heinz, <a href="/A281957/b281957.txt">Table of n, a(n) for n = 1..20000</a> %H A281957 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition</a> %e A281957 ------------------------------------- %e A281957 Number %e A281957 Partitions of 5 of terms %e A281957 ------------------------------------- %e A281957 5 .......................... 1 %e A281957 1 + 4 ...................... 2 %e A281957 2 + 3 ...................... 2 %e A281957 1 + 1 + 3 .................. 3 %e A281957 1 + 2 + 2 .................. 3 %e A281957 1 + 1 + 1 + 2 .............. 4 %e A281957 1 + 1 + 1 + 1 + 1 .......... 5 %e A281957 ------------------------------------- %e A281957 There are 7 partitions of the integer 5 is 7. The four partitions 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1 each have at least 3 parts, so a(5) = 3. %o A281957 (Magma) lst:=[]; k:=1; s:=0; for m in [0..8] do s+:=NumberOfPartitions(m); while k le s do Append(~lst, k); k+:=1; end while; Append(~lst, s); end for; lst; %Y A281957 Cf. A000070, A008284, A052810. %K A281957 nonn,easy %O A281957 1,3 %A A281957 _Arkadiusz Wesolowski_, Feb 03 2017