cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281975 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that both x and |x-y| are squares.

Original entry on oeis.org

1, 3, 4, 3, 2, 4, 4, 2, 1, 4, 5, 3, 1, 2, 3, 2, 3, 5, 7, 3, 4, 5, 2, 1, 2, 6, 9, 6, 2, 4, 6, 3, 4, 6, 8, 4, 6, 5, 4, 3, 2, 11, 10, 4, 1, 7, 5, 1, 3, 3, 11, 9, 7, 5, 6, 4, 2, 7, 5, 4, 2, 6, 4, 3, 2, 7, 15, 4, 4, 6, 5, 1, 2, 6, 7, 7, 3, 6, 4, 2, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 03 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,....
(ii) Each nonnegative integer n can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that |x-y| and 2*(y-z) (or 2*(z-y)) are both squares.
(iii) For each ordered pair (a,b) = (2,1), (3,1), (9,5), (14,10), any nonnegative integer n can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x and |a*x-b*y| are both squares.
The author has proved that each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x (or x-y, or 2(x-y)) is a square.
See also A281976 and A281977 for similar conjectures.

Examples

			a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 = 0^2 and |0-0| = 0^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 = 1^2 and |1-1| = 0^2.
a(44) = 1 since 44 = 1^2 + 5^2 + 3^2 + 3^2 with 1 = 1^2 and |1-5| = 2^2.
a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 = 1^2 and |1-1| = 0^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 = 1^2 and |1-5| = 2^2.
a(95) = 1 since 95 = 1^2 + 2^2 + 3^2 + 9^2 with 1 = 1^2 and |1-2| = 1^2.
a(140) = 1 since 140 = 9^2 + 5^2 + 3^2 + 5^2 with 9 = 3^2 and |9-5| = 2^2.
a(428) = 1 since 428 = 9^2 + 13^2 + 3^2 + 13^2 with 9 = 3^2 and |9-13| = 2^2.
a(568) = 1 since 568 = 4^2 + 8^2 + 2^2 + 22^2 with 4 = 2^2 and |4-8| = 2^2.
a(632) = 1 since 632 = 16^2 + 12^2 + 6^2 + 14^2 with 16 = 4^2 and |16-12| = 2^2.
a(1144) = 1 since 1144 = 16^2 + 20^2 + 2^2 + 22^2 with 16 = 4^2 and |16-20| = 2^2.
a(1544) = 1 since 1544 = 0^2 + 0^2 + 10^2 + 38^2 with 0 = 0^2 and |0-0| = 0^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[Abs[x^2-y]],r=r+1],{x,0,n^(1/4)},{y,0,Sqrt[n-x^4]},{z,0,Sqrt[(n-x^4-y^2)/2]}];Print[n," ",r];Continue,{n,0,80}]