A281975 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that both x and |x-y| are squares.
1, 3, 4, 3, 2, 4, 4, 2, 1, 4, 5, 3, 1, 2, 3, 2, 3, 5, 7, 3, 4, 5, 2, 1, 2, 6, 9, 6, 2, 4, 6, 3, 4, 6, 8, 4, 6, 5, 4, 3, 2, 11, 10, 4, 1, 7, 5, 1, 3, 3, 11, 9, 7, 5, 6, 4, 2, 7, 5, 4, 2, 6, 4, 3, 2, 7, 15, 4, 4, 6, 5, 1, 2, 6, 7, 7, 3, 6, 4, 2, 4
Offset: 0
Keywords
Examples
a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 = 0^2 and |0-0| = 0^2. a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 = 1^2 and |1-1| = 0^2. a(44) = 1 since 44 = 1^2 + 5^2 + 3^2 + 3^2 with 1 = 1^2 and |1-5| = 2^2. a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 = 1^2 and |1-1| = 0^2. a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 = 1^2 and |1-5| = 2^2. a(95) = 1 since 95 = 1^2 + 2^2 + 3^2 + 9^2 with 1 = 1^2 and |1-2| = 1^2. a(140) = 1 since 140 = 9^2 + 5^2 + 3^2 + 5^2 with 9 = 3^2 and |9-5| = 2^2. a(428) = 1 since 428 = 9^2 + 13^2 + 3^2 + 13^2 with 9 = 3^2 and |9-13| = 2^2. a(568) = 1 since 568 = 4^2 + 8^2 + 2^2 + 22^2 with 4 = 2^2 and |4-8| = 2^2. a(632) = 1 since 632 = 16^2 + 12^2 + 6^2 + 14^2 with 16 = 4^2 and |16-12| = 2^2. a(1144) = 1 since 1144 = 16^2 + 20^2 + 2^2 + 22^2 with 16 = 4^2 and |16-20| = 2^2. a(1544) = 1 since 1544 = 0^2 + 0^2 + 10^2 + 38^2 with 0 = 0^2 and |0-0| = 0^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[Abs[x^2-y]],r=r+1],{x,0,n^(1/4)},{y,0,Sqrt[n-x^4]},{z,0,Sqrt[(n-x^4-y^2)/2]}];Print[n," ",r];Continue,{n,0,80}]
Comments