This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281977 #13 Jun 01 2019 23:55:15 %S A281977 1,1,3,2,2,3,2,2,2,2,2,3,1,2,5,3,1,1,3,2,6,3,5,2,2,2,3,5,1,4,4,1,3,2, %T A281977 7,10,3,3,3,3,1,1,4,4,3,5,2,2,2,1,7,6,5,5,3,3,2,2,2,6,2,2,10,4,2,2,4, %U A281977 6,4,3,5,2,3,2,5,7,4,8,6,2,3 %N A281977 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and -7*x - 8*y + 8*z + 16*w are squares. %C A281977 Conjecture: a(n) > 0 for all n = 0,1,2,.... %C A281977 The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares. %C A281977 We have verified the conjecture for all n = 0..10^6. %C A281977 See also A281976, A282013 and A282014 for similar conjectures. %C A281977 Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^8. - _Zhi-Wei Sun_, Jun 02 2019 %H A281977 Zhi-Wei Sun, <a href="/A281977/b281977.txt">Table of n, a(n) for n = 0..10000</a> %H A281977 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190. %H A281977 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017. %e A281977 a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0^2 and -7*0 - 8*0 + 8*0 + 16*1 = 4^2. %e A281977 a(12) = 1 since 12 = 1^2 + 1^2 + 3^2 + 1^2 with 1 = 1^2 and -7*1 - 8*1 + 8*3 + 16*1 = 5^2. %e A281977 a(17) = 1 since 17 = 1^2 + 0^2 + 4^2 + 0^2 with 1 = 1^2 and -7*1 - 8*0 + 8*4 + 16*0 = 5^2. %e A281977 a(28) = 1 since 28 = 4^2 + 2^2 + 2^2 + 2^2 with 4 = 2^2 and -7*4 - 8*2 + 8*2 + 16*2 = 2^2. %e A281977 a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and -7*1 - 8*1 + 8*2 + 16*5 = 9^2. %e A281977 a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 4 = 2^2 and -7*4 -8*2 + 8*2 + 16*4 = 6^2. %e A281977 a(41) = 1 since 41 = 1^2 + 2^2 + 6^2 + 0^2 with 1 = 1^2 and -7*1 - 8*2 + 8*6 + 16*0 = 5^2. %e A281977 a(49) = 1 since 49 = 0^2 + 6^2 + 2^2 + 3^2 with 0 = 0^2 and -7*0 - 8*6 + 8*2 + 16*3 = 4^2. %e A281977 a(241) = 1 since 241 = 9^2 + 4^2 + 12^2 + 0^2 with 9 = 3^2 and -7*9 - 8*4 + 8*12 + 16*0 = 1^2. %e A281977 a(433) = 1 since 433 = 16^2 + 8^2 + 8^2 + 7^2 with 16 = 4^2 and -7*16 - 8*8 + 8*8 + 16*7 = 0^2. %e A281977 a(1113) = 1 since 1113 = 1^2 + 30^2 + 4^2 + 14^2 with 1 = 1^2 and -7*1 - 8*30 + 8*4 + 16*14 = 3^2. %e A281977 a(1521) = 1 since 1521 = 0^2 + 22^2 + 14^2 + 29^2 with 0 = 0^2 and -7*0 - 8*22 + 8*14 + 16*29 = 20^2. %t A281977 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; %t A281977 Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[16*Sqrt[n-x^4-y^2-z^2]+8z-8y-7x^2],r=r+1],{x,0,n^(1/4)},{y,0,Sqrt[n-x^4]},{z,0,Sqrt[n-x^4-y^2]}];Print[n," ",r];Continue,{n,0,80}] %Y A281977 Cf. A000118, A000290, A270969, A281939, A281941, A281975, A281976, A282013, A282014. %K A281977 nonn %O A281977 0,3 %A A281977 _Zhi-Wei Sun_, Feb 04 2017