This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281978 #10 Feb 07 2017 04:04:38 %S A281978 1,4,2,6,3,15,5,20,10,40,8,24,12,36,9,54,18,90,30,120,60,180,45,135, %T A281978 27,162,81,324,108,216,72,144,16,64,32,96,48,240,80,320,160,640,128, %U A281978 384,192,576,288,864,432,1296,648,1944,243,972,486,1458,729,3645,405 %N A281978 Lexicographically earliest sequence of distinct terms such that, for any n>0, a(2n) is divisible by a(2n-1) and by a(2n+1). %C A281978 To compute a(2n) and a(2n+1): we take the least unseen multiple of a(2n-1) with an unseen proper divisor: the multiple gives a(2n) and the least proger divisor gives a(2n+1). %C A281978 The first multiple of 2 occurs at n=2: a(2)=4, and a(3)=2. %C A281978 The first multiple of 3 occurs at n=4: a(4)=6, and a(5)=3, %C A281978 The first multiple of 5 occurs at n=6: a(6)=15, and a(7)=5. %C A281978 The first multiple of 7 occurs at n=454: a(454)=5511240, and a(455)=7. %C A281978 The first multiple of 11 occurs at n=889838: a(889838)=627667978163491186346557440000000000000, and a(889839)=11. %C A281978 For n>1, let b(n)=least k>0 such that a(n+k)<>a(n)*a(k+1); the first records for b are: %C A281978 n b(n) a(n) %C A281978 ------ ------- ---- %C A281978 2 1 2^2 %C A281978 7 3 5 %C A281978 19 4 2*3*5 %C A281978 33 14 2^4 %C A281978 73 27 5^2 %C A281978 455 243 7 %C A281978 1439 248 7^2 %C A281978 3069 275 7^3 %C A281978 10567 276 7^5 %C A281978 41709 768 7^8 %C A281978 85179 1169 7^10 %C A281978 889839 >110162 11 %C A281978 Conjectures: %C A281978 - All prime numbers appear in this sequence, in increasing order, %C A281978 - The derived sequence b is unbounded, %C A281978 - This sequence is a permutation of the natural numbers. %H A281978 Rémy Sigrist, <a href="/A281978/b281978.txt">Table of n, a(n) for n = 1..25000</a> %H A281978 Rémy Sigrist, <a href="/A281978/a281978.gp.txt">PARI program for A281978</a> %H A281978 Rémy Sigrist, <a href="/A281978/a281978.png">Logarithmic scatterplot of the first million terms</a> %e A281978 The first terms, alongside their p-adic valuations with respect to p=2, 3, 5 and 7 (with 0's omitted), are: %e A281978 n a(n) v2 v3 v5 v7 %e A281978 --- ------- -- -- -- -- %e A281978 1 1 %e A281978 2 4 2 %e A281978 3 2 1 %e A281978 4 6 1 1 %e A281978 5 3 1 %e A281978 6 15 1 1 %e A281978 7 5 1 %e A281978 8 20 2 1 %e A281978 9 10 1 1 %e A281978 10 40 3 1 %e A281978 11 8 3 %e A281978 12 24 3 1 %e A281978 13 12 2 1 %e A281978 14 36 2 2 %e A281978 15 9 2 %e A281978 16 54 1 3 %e A281978 17 18 1 2 %e A281978 18 90 1 2 1 %e A281978 19 30 1 1 1 %e A281978 20 120 3 1 1 %e A281978 21 60 2 1 1 %e A281978 22 180 2 2 1 %e A281978 23 45 2 1 %e A281978 24 135 3 1 %e A281978 ... %e A281978 451 524880 4 8 1 %e A281978 452 1574640 4 9 1 %e A281978 453 787320 3 9 1 %e A281978 454 5511240 3 9 1 1 %e A281978 455 7 1 %e A281978 456 28 2 1 %e A281978 457 14 1 1 %e A281978 458 42 1 1 1 %Y A281978 Cf. A036552 (a(2n) is divisible by a(2n-1)). %K A281978 nonn %O A281978 1,2 %A A281978 _Rémy Sigrist_, Feb 04 2017