A281980 Numbers of the form x^4 + y^2 with x^2 + 24*y a square, where x and y are nonnegative integers.
0, 1, 2, 5, 16, 26, 32, 36, 50, 80, 81, 90, 145, 162, 226, 256, 260, 356, 405, 416, 485, 512, 576, 625, 626, 641, 661, 677, 746, 800, 821, 981, 1066, 1226, 1250, 1280, 1296, 1440, 1601, 1781, 2020, 2106, 2146, 2320, 2401, 2410, 2426, 2501, 2570, 2592, 2602, 2801, 2916, 2977, 3125, 3250, 3490, 3616, 3761, 3845
Offset: 1
Keywords
Examples
a(1) = 0 since 0 = 0^4 + 0^2 with 0^2 + 24*0 = 0^2. a(2) = 1 since 1 = 1^4 + 0^2 with 1^2 + 24*0 = 1^2. a(3) = 2 since 2 = 1^4 + 1^2 with 1^2 + 24*1 = 5^2. a(4) = 5 since 5 = 1^4 + 2^2 with 1^2 + 24*2 = 7^2. a(5) = 16 since 16 = 2^4 + 0^2 with 2^2 + 24*0 = 2^2. a(6) = 26 since 26 = 1^4 + 5^2 with 1^2 + 24*5 = 11^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; n=0;Do[Do[If[SQ[m-x^4]&&SQ[x^2+24*Sqrt[m-x^4]],n=n+1;Print[n," ",m];Goto[aa]],{x,0,m^(1/4)}];Label[aa];Continue,{m,0,4000}]
Comments