cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282010 Number of ways to partition Turan graph T(2n,n) into connected components.

This page as a plain text file.
%I A282010 #19 Feb 16 2025 08:33:40
%S A282010 1,1,12,163,3411,97164,3576001,163701521,9064712524,594288068019,
%T A282010 45352945127123,3973596101084108,395147058261233761,
%U A282010 44170986458602383553,5504694207040057913164,759355292729159336345955,115228949414563130433140659,19129024114529146183236435660
%N A282010 Number of ways to partition Turan graph T(2n,n) into connected components.
%C A282010 Turan graph T(2n,n) is also called cocktail party graph, so a(n) is the number of ways to seat n married couples for one or a few tables in such a manner that no table is fully occupied by any couple.
%C A282010 If we dissect (n-1)-skeleton of n-cube along some (n-2)-edges into some parts, then a(n) is the number of ways of such dissections.
%H A282010 Indranil Ghosh, <a href="/A282010/b282010.txt">Table of n, a(n) for n = 0..100</a>
%H A282010 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a>
%H A282010 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TuranGraph.html">Turan Graph</a>
%F A282010 a(n) = Sum_{j=0..n} ((-1)^(n-j))*A020557(j)*binomial(n,j).
%F A282010 a(n) = Sum_{j=0..n} ((-1)^(n-j))*A000110(2*j)*binomial(n,j).
%e A282010 For n=1, Turan graph T(2,1) (2-empty graph) shall be partitioned into two singleton subgraphs (1 way), a(1)=1.
%e A282010 For n=2, Turan graph T(4,2) (square graph) shall be partitioned into: the same square graph (1 way) or one singleton + one 3-path subgraphs (4 ways) or two singleton + one 2-path subgraphs (4 ways) or two 2-path subgraphs (2 ways) or four singleton subgraphs (1 way), a(2)=12.
%p A282010 A282010 := proc(n)
%p A282010     add((-1)^(n-j)*combinat[bell](2*j)*binomial(n,j),j=0..n) ;
%p A282010 end proc:
%p A282010 seq(A282010(n),n=0..20) ; # _R. J. Mathar_, Jun 27 2024
%t A282010 a[n_]:=BellB[2n];Table[Sum[((-1)^(n-j))*a[j]*Binomial[n,j],{j,0,n}],{n,0,17}] (* _Indranil Ghosh_, Feb 25 2017 *)
%o A282010 (PARI) bell(n) = polcoeff( sum( k=0, n, prod(i=1, k, x/(1 - i*x)), x^n * O(x)), n)
%o A282010 a(n) = sum(j=0, n, ((-1)^(n-j))*bell(2*j)*binomial(n,j)); \\ _Michel Marcus_, Feb 05 2017
%Y A282010 Cf. A000110, A020557
%K A282010 nonn,easy
%O A282010 0,3
%A A282010 _Tengiz Gogoberidze_, Feb 04 2017
%E A282010 More terms from _Michel Marcus_, Feb 05 2017