This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282013 #15 Jun 01 2019 23:52:55 %S A282013 1,2,3,3,2,1,3,2,1,4,4,2,2,2,1,2,2,4,8,4,3,2,3,2,3,5,5,7,3,2,5,1,3,7, %T A282013 6,5,5,3,5,3,2,3,9,5,2,6,3,1,3,5,5,10,6,2,8,4,3,5,6,3,3,3,4,4,2,5,9,8, %U A282013 5,4,6,1,5,6,5,9,2,3,7,1,1 %N A282013 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and 49*x + 48*(y-z) are squares. %C A282013 Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 5, 8, 14, 31, 47, 71, 79, 143, 248, 463, 1039). %C A282013 The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares. %C A282013 We have verified a(n) > 0 for all n = 0..10^7. %C A282013 See also A281976, A281977 and A282014 for similar conjectures. %C A282013 Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^9. - _Zhi-Wei Sun_, Jun 02 2019 %H A282013 Zhi-Wei Sun, <a href="/A282013/b282013.txt">Table of n, a(n) for n = 0..10000</a> %H A282013 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190. %H A282013 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017. %e A282013 a(5) = 1 since 5 = 1^2 + 0^2 + 0^2 + 2^2 with 1 = 1^2 and 49*1 + 48*(0-0) = 7^2. %e A282013 a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 0 = 0^2 and 49*0 + 48*(2-2) = 0^2. %e A282013 a(14) = 1 since 14 = 1^2 + 2^2 + 3^2 + 0^2 with 1 = 1^2 and 49*1 + 48*(2-3) = 1^2. %e A282013 a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(1-2) = 1^2. %e A282013 a(47) = 1 since 47 = 1^2 + 6^2 + 1^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(6-1) = 17^2. %e A282013 a(71) = 1 since 71 = 1^2 + 5^2 + 6^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2. %e A282013 a(79) = 1 since 79 = 1^2 + 7^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(7-2) = 17^2. %e A282013 a(143) = 1 since 143 = 1^2 + 5^2 + 6^2 + 9^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2. %e A282013 a(248) = 1 since 248 = 4^2 + 6^2 + 0^2 + 14^2 with 4 = 2^2 and 49*4 + 48*(6-0) = 22^2. %e A282013 a(463) = 1 since 463 = 9^2 + 6^2 + 15^2 + 11^2 with 9 = 3^2 and 49*9 + 48*(6-15) = 3^2. %e A282013 a(1039) = 1 since 1039 = 1^2 + 22^2 + 23^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(22-23) = 1^2. %t A282013 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; %t A282013 Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[49x^2+48(y-z)],r=r+1],{x,0,n^(1/4)},{y,0,Sqrt[n-x^4]},{z,0,Sqrt[n-x^4-y^2]}];Print[n," ",r];Continue,{n,0,80}] %Y A282013 Cf. A000118, A000290, A270969, A271518, A281939, A281941, A281975, A281976, A281977, A282014. %K A282013 nonn %O A282013 0,2 %A A282013 _Zhi-Wei Sun_, Feb 04 2017