A282018 Coefficients in q-expansion of E_2^3, where E_2 is the Eisenstein series shown in A006352.
1, -72, 1512, -3744, -95544, -473904, -1538784, -3947328, -8597880, -16987176, -30607632, -52030944, -83972448, -129500784, -194056128, -279446976, -397468152, -544155408, -743106744, -978896160, -1296984528, -1654458624, -2139055776, -2661349824, -3370243680, -4106376504, -5113466064
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A006352.
Programs
-
Maple
with(numtheory); M:=100; E := proc(k) local n, t1; global M; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1); series(t1, q, M+1); end; e2:=E(2); e4:=E(4); e6:=E(6); series(e2^3,q,M+1); seriestolist(%);
-
Mathematica
terms = 27; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E2[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)