This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282019 #11 Feb 23 2018 03:40:36 %S A282019 1,216,-3672,-62496,-322488,-1121904,-2969568,-6737472,-13678200, %T A282019 -24978312,-43826832,-70620768,-112325472,-166558896,-248342976, %U A282019 -346320576,-491604984,-655461072,-897864696,-1154109600,-1532856528,-1921344768,-2488726944,-3042415296,-3876616800,-4639932504 %N A282019 Coefficients in q-expansion of E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively. %H A282019 Seiichi Manyama, <a href="/A282019/b282019.txt">Table of n, a(n) for n = 0..1000</a> %p A282019 with(numtheory); M:=100; %p A282019 E := proc(k) local n, t1; global M; %p A282019 t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1); %p A282019 series(t1, q, M+1); end; %p A282019 e2:=E(2); e4:=E(4); e6:=E(6); %p A282019 series(e2*e4,q,M+1); %p A282019 seriestolist(%); %t A282019 terms = 26; %t A282019 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A282019 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A282019 E2[x]*E4[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *) %Y A282019 Cf. A004009, A006352. %K A282019 sign %O A282019 0,2 %A A282019 _N. J. A. Sloane_, Feb 05 2017