This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282033 #25 Aug 04 2021 15:44:24 %S A282033 1,2,3,4,5,10,20,25,50,75,100,200,300,400,500,600,700,800,900,1000, %T A282033 1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300, %U A282033 2400,2500,2600,2700,2800,2900,3000,3100,3200,3300,3400,3500,3600,3700 %N A282033 An example of a collection of five sets (based on U.S. coinage) which is not an additive number system. %C A282033 The five sets are the following: %C A282033 1, 2, 3, 4; %C A282033 5; %C A282033 10, 20; %C A282033 25, 50, 75; %C A282033 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, ... %C A282033 (the last set being infinite). %C A282033 In contrast to A282032 this is not an additive number system because 26 for example can be represented in two ways as a sum of numbers from distinct sets (26 = 1+5+20 = 1+25). %H A282033 Colin Barker, <a href="/A282033/b282033.txt">Table of n, a(n) for n = 1..1000</a> %H A282033 Michael Maltenfort, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.124.2.132">Characterizing Additive Systems</a>, The American Mathematical Monthly 124.2 (2017): 132-148. See Fig. 3. %H A282033 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A282033 From _Colin Barker_, Apr 16 2020: (Start) %F A282033 G.f.: x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2. %F A282033 a(n) = 2*a(n-1) - a(n-2) for n>12. %F A282033 (End) %t A282033 LinearRecurrence[{2,-1},{1,2,3,4,5,10,20,25,50,75,100,200,300,400},50] (* or *) CoefficientList[Series[x (1+4x^5+5x^6-5x^7+ 20x^8+ 75x^11)/ (1-x)^2, {x,0,50}],x] (* _Harvey P. Dale_, Aug 04 2021 *) %o A282033 (PARI) Vec(x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2 + O(x^50)) \\ _Colin Barker_, Apr 16 2020 %Y A282033 Cf. A032174, A282032, A282034 are legitimate examples of additive number systems. %K A282033 nonn,tabf,easy %O A282033 1,2 %A A282033 _N. J. A. Sloane_, Feb 20 2017