This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282035 #15 Dec 11 2024 17:30:12 %S A282035 1,7,22,76,92,186,430,423,767,1072,994,1343,1577,2369,2675,3683,3930, %T A282035 4587,5134,6520,6012,7518,7831,8955,10761,11596,12258,12428,14809, %U A282035 15517,16802,19527,23025,21148,26811,29148,28720,31929,35247,33321,41900,41807,44778,47844,51856,52771,51253,57466 %N A282035 Sum of quadratic residues of (n-th prime == 3 mod 4). %H A282035 Vincenzo Librandi, <a href="/A282035/b282035.txt">Table of n, a(n) for n = 1..5000</a> %H A282035 Aebi, Christian, and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 (2015). %p A282035 with(numtheory): %p A282035 a:=[]; m:=[]; d:=[]; %p A282035 for i1 from 1 to 200 do %p A282035 p:=ithprime(i1); %p A282035 if (p mod 4) = 3 then %p A282035 sp:=0; sm:=0; %p A282035 for j from 1 to p-1 do %p A282035 if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od; %p A282035 a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp]; %p A282035 fi; %p A282035 od: %p A282035 a; m; d; # A282035, A282036, A282037 %t A282035 Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 4]==3 &]}] (* _Vincenzo Librandi_, Feb 21 2017 *) %t A282035 Table[Total[PowerMod[#,2,n]&/@Range[n/2]],{n,Select[Prime[Range[100]],Mod[#,4]==3&]}] (* _Harvey P. Dale_, Dec 11 2024 *) %o A282035 (PARI) do(p)=sum(k=1,p-1,k^2%p)/2 %o A282035 apply(do, select(p->p%4==3, primes(100))) \\ _Charles R Greathouse IV_, Feb 21 2017 %Y A282035 Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038. %K A282035 nonn %O A282035 1,2 %A A282035 _N. J. A. Sloane_, Feb 20 2017