This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282037 #20 Aug 31 2018 15:59:03 %S A282037 1,7,11,19,69,93,43,235,177,67,497,395,249,515,321,635,655,417,1057, %T A282037 163,1837,895,2483,1791,633,1561,1135,3585,1757,3419,2981,849,921, %U A282037 5909,993,1735,6821,3303,1137,6511,3771,9051,6585,2215,3241,3269,11975,3409,4419,1497,10563,2615,1641,5067,2855 %N A282037 Let p = n-th prime == 3 mod 4; a(n) = (sum of quadratic nonresidues mod p) - (sum of quadratic residues mod p). %C A282037 Equals A282036 - A282035. %H A282037 Rémy Sigrist, <a href="/A282037/b282037.txt">Table of n, a(n) for n = 1..10000</a> %H A282037 Christian Aebi and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 [math.NT] (2015). %p A282037 with(numtheory): %p A282037 a:=[]; m:=[]; d:=[]; %p A282037 for i1 from 1 to 200 do %p A282037 p:=ithprime(i1); %p A282037 if (p mod 4) = 3 then %p A282037 sp:=0; sm:=0; %p A282037 for j from 1 to p-1 do %p A282037 if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od; %p A282037 a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp]; %p A282037 fi; %p A282037 od: %p A282037 a; m; d; # A282035, A282036, A282037 %t A282037 sum[p_] := Total[If[JacobiSymbol[#, p] == 1, -#, #]& /@ Range[p-1]]; %t A282037 sum /@ Select[Prime[Range[200]], Mod[#, 4] == 3&] (* _Jean-François Alcover_, Aug 31 2018 *) %Y A282037 Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038. %K A282037 nonn %O A282037 1,2 %A A282037 _N. J. A. Sloane_, Feb 20 2017