This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282042 #20 Aug 31 2018 15:58:43 %S A282042 11,128,219,520,1176,1348,2221,3310,4766,6106,8034,8271,10049,12443, %T A282042 14613,15193,21012,27486,26814,30664,39248,39318,41699,48888,46052, %U A282042 52595,74613,72878,78599,85768,107895,103643,111125,111195,130497,145619,148490,160159,169503,166856,180406,194204 %N A282042 Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic nonresidues mod p that are > p/2. %H A282042 Robert Israel, <a href="/A282042/b282042.txt">Table of n, a(n) for n = 1..1000</a> %H A282042 Aebi, Christian, and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 (2015). %p A282042 with(numtheory): %p A282042 Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; %p A282042 for i1 from 1 to 300 do %p A282042 p:=ithprime(i1); %p A282042 if (p mod 8) = 7 then %p A282042 ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; %p A282042 for j from 1 to p-1 do %p A282042 if legendre(j,p)=1 then %p A282042 q:=q+j; %p A282042 if j<p/2 then ql:=ql+j; else qu:=qu+j; fi; %p A282042 else %p A282042 n:=n+j; %p A282042 if j<p/2 then nl:=nl+j; else nu:=nu+j; fi; %p A282042 fi; %p A282042 od; %p A282042 Ql:=[op(Ql),ql]; %p A282042 Qu:=[op(Qu),qu]; %p A282042 Q:=[op(Q),q]; %p A282042 Nl:=[op(Nl),nl]; %p A282042 Nu:=[op(Nu),nu]; %p A282042 N:=[op(N),n]; %p A282042 fi; %p A282042 od: %p A282042 Ql; Qu; Q; Nl; Nu; N; # A282039, A282040, A282041, A282039 again, A282042, A282043 %t A282042 sum[p_]:= Total[If[#>p/2 && JacobiSymbol[#, p] != 1, #, 0]& /@ Range[p-1]]; %t A282042 sum /@ Select[Range[7, 1000, 8], PrimeQ] (* _Jean-François Alcover_, Aug 31 2018 *) %Y A282042 Cf. A282035-A282043 and A282721-A282727. %K A282042 nonn %O A282042 1,1 %A A282042 _N. J. A. Sloane_, Feb 20 2017