A282043 Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic nonresidues mod p.
14, 161, 279, 658, 1491, 1738, 2884, 4318, 6191, 7849, 10314, 10746, 13157, 16013, 18936, 19783, 27057, 35541, 35232, 39832, 50858, 51363, 55097, 63228, 60875, 68408, 97038, 95906, 103484, 111931, 140205, 136676, 145628, 146445, 172830, 189614, 195038, 209332, 221373, 219641, 238849, 254597
Offset: 1
Keywords
Links
- Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
Programs
-
Maple
with(numtheory): Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; for i1 from 1 to 300 do p:=ithprime(i1); if (p mod 8) = 7 then ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; for j from 1 to p-1 do if legendre(j,p)=1 then q:=q+j; if j
-
Mathematica
sqnr[p_] := Select[Range[p-1], JacobiSymbol[#, p] != 1&] // Total; sqnr /@ Select[Prime[Range[200]], Mod[#, 8] == 7&] (* Jean-François Alcover, Aug 30 2018 *)