This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282063 #11 Feb 16 2025 08:33:40 %S A282063 5,13,2,563,3,7 %N A282063 A(n, k) = k-th Wilson prime p of order n with p >= n and k running over the positive integers. Square array read by antidiagonals. %C A282063 A Wilson prime of order n is a prime p such that (n-1)!*(p-n)!-(-1)^n == 0 (modulo p^2). %H A282063 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WilsonPrime.html">Wilson Prime</a> %H A282063 Wikipedia, <a href="http://en.wikipedia.org/wiki/Wilson_prime">Wilson prime</a> %e A282063 Array A(n, k) starts: %e A282063 5, 13, 563 %e A282063 2, 3, 11, 107, 4931 %e A282063 7 %e A282063 10429 %e A282063 5, 7, 47 %e A282063 11 %o A282063 (PARI) is_wilson(n, order) = Mod((order-1)!*(n-order)!-(-1)^order, n^2)==0 %o A282063 table(rows, cols) = for(x=1, rows, my(i=0); forprime(p=x, , if(is_wilson(p, x), print1(p, ", "); i++; if(i==cols, print(""); break)))) %o A282063 table(4, 3) \\ print initial 4 rows and 3 columns of table %Y A282063 Cf. A007540 (row 1), A079853 (row 2), A152413 (row 17), A128666 (column 1). %K A282063 nonn,hard,tabl,more %O A282063 1,1 %A A282063 _Felix Fröhlich_, Feb 05 2017