cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282078 Number of 10-element subsets of [n+10] having an even sum.

This page as a plain text file.
%I A282078 #11 Feb 06 2017 11:29:36
%S A282078 0,5,30,140,490,1491,3976,9696,21816,46126,92252,176232,323092,571802,
%T A282078 980232,1633984,2655224,4217499,6560554,10014004,15021006,22174581,
%U A282078 32253936,46278336,65560976,91786604,127089144,174160784,236361064,317866884,423822512
%N A282078 Number of 10-element subsets of [n+10] having an even sum.
%H A282078 Alois P. Heinz, <a href="/A282078/b282078.txt">Table of n, a(n) for n = 0..1000</a>
%H A282078 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1).
%F A282078 G.f.: -x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11).
%F A282078 a(n) = (-2735775*(-1+(-1)^n) - 45*(-344851 + 56595*(-1)^n)*n + (22908402-803250*(-1)^n)*n^2 - 50*(-325607+2079*(-1)^n)*n^3 + (6781885-4725*(-1)^n)*n^4 + 1802220*n^5 + 315546*n^6 + 36300*n^7 + 2640*n^8 + 110*n^9 + 2*n^10) / 14515200. - _Colin Barker_, Feb 06 2017
%e A282078 a(1) = 5: {1,2,3,4,5,6,7,8,9,11}, {1,2,3,4,5,6,7,9,10,11}, {1,2,3,4,5,7,8,9,10,11}, {1,2,3,5,6,7,8,9,10,11}, {1,3,4,5,6,7,8,9,10,11}.
%o A282078 (PARI) concat(0, Vec(-x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11) + O(x^30))) \\ _Colin Barker_, Feb 06 2017
%Y A282078 Column k=10 of A282011.
%K A282078 nonn,easy
%O A282078 0,2
%A A282078 _Alois P. Heinz_, Feb 05 2017