This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282089 #32 Feb 06 2017 20:15:28 %S A282089 1,2,8,7,1,9,4,0,3,6,0,6,7,9,2,4,0,1,7,0,2,0,9,2,7,8,0,7,5,8,1,1,9,8, %T A282089 7,6,4,4,0,8,3,5,4,3,5,6,6,9,9,2,7,8,0,5,4,4,8,6,1,4,1,2,9,3,2,7,1,4, %U A282089 5,2,8,3,9,1,4,4,8,7,2,0,2,2,1,1,2,3,7,9,0,7,9,9,2,6,0,9,3,4,0,3,3,9,9,8 %N A282089 Decimal expansion of constant 1.287194... related to a conjectural Viète-like formula for Pi. %C A282089 Conjecture: Pi = lim_{k -> infinity} 2^{k + 1}*(1 - c_k), where the variable c_k is defined by a set of the Viète-like recurrence relations {a_1 = sqrt(2), a_k = sqrt(2 + a_{k - 1}), b_k = sqrt(2 - a_k)/a_{k + 1}, c_1 = b_1, c_k = (c_{k - 1} + b_k)/(1 - c_{k - 1}*b_k)}. From this conjecture it follows that Sum_{k >= 1} (1 - c_k) is convergent [Abrarov and Quine]. %H A282089 Sanjar Abrarov, <a href="/A282089/b282089.txt">Table of n, a(n) for n = 1..104</a> %H A282089 S. M. Abrarov and B. M. Quine, <a href="https://arxiv.org/abs/1702.00901">A set of the Viète-like recurrence relations for the unity constant</a>, arXiv:1702.00901 [math.GM], 2017. %F A282089 Sum_{k >= 1} (1 - c_k) = 1.287194... , where c_k is computed by the recurrence equations a_1 = sqrt(2), a_k = sqrt(2 + a_{k - 1}), b_k = sqrt(2 - a_k)/a_{k + 1}, c_1 = b_1 and c_k = (c_{k - 1} + b_k)/(1 - c_{k - 1}*b_k). %e A282089 1.287194036067924017020927807581... %t A282089 Clear[a, b, c] %t A282089 a[k_] := N[Nest[Sqrt[2 + #1] &, 0, k], 100] %t A282089 b[k_] := b[k] = Sqrt[2 - a[k]]/a[k + 1] %t A282089 c[1] := b[1] = b[1] %t A282089 c[k_] := c[k] = (c[k - 1] + b[k])/(1 - c[k - 1]*b[k]) %t A282089 k := 90 %t A282089 Print["Index k = ", k] %t A282089 m := 1 %t A282089 Print["Power m = ", m] %t A282089 (* The equation (12) *) %t A282089 apprPi := 2^(k + 1)*(1 - c[k]^m) %t A282089 Print["Actual value of Pi is ", N[Pi, 30]] %t A282089 Print["At k = ", k, " the approximated value of Pi is ", N[apprPi, 30]] %t A282089 K := 300 %t A282089 Print["Truncating integer K = ", K] %t A282089 Print["Computing the digits ..."] %t A282089 RealDigits[N[Sum[1 - c[k]^m, {k, 1, K}], 30]][[1]] %Y A282089 Cf. A000796. %K A282089 nonn,cons %O A282089 1,2 %A A282089 _Sanjar Abrarov_, Feb 06 2017