This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282091 #10 Feb 06 2017 08:45:47 %S A282091 1,2,1,1,2,2,2,2,1,3,2,1,3,1,2,2,1,4,1,2,2,2,2,1,2,3,4,2,3,2,2,1,1,5, %T A282091 2,3,4,2,1,2,1,4,5,1,4,2,1,2,1,5,3,3,3,1,3,4,1,4,2,1,5,3,4,2,3,5,3,3, %U A282091 6,3,5,3,4,6,1,3,5,3,2,3,2 %N A282091 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x + y - z a cube of an integer, where x,y,z,w are nonnegative integers with x >= y <= z and x == y (mod 2). %C A282091 Conjecture: (i) a(n) > 0 for all n = 0,1,2,.... Also, any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and x <= y <= z such that x + y - z is a cube of an integer. %C A282091 (ii) Any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that P(x,y,z,w) is a cube of an integer, whenever P(x,y,z,w) is among the following polynomials: 2x-y, 4(2x-y), 4(x+y-z), 2x+y-z, 2*(2x+y-z), 4(2x+y-z), x+2y-2z, 4(x+2y-2z), x+3y-3z, 4(x+3y-3z), 2x+3y-3z, 2(2x+3y-3z), 4(2x+3y-3z), x+5y-5z, 4(x+5y-5z), 2x+4y-10z, 4x+8y-20z, 2x+y-z-w, 4(2x+y-z-w), 4x+y-2z-w, 2(4x+y-2z-w), 4(4x+y-2z-w). %C A282091 The author has proved that each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x (or 4x) is a cube. %H A282091 Zhi-Wei Sun, <a href="/A282091/b282091.txt">Table of n, a(n) for n = 0..10000</a> %H A282091 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190. %e A282091 a(2) = 1 since 2 = 0^2 + 0^2 + 1^2 + 1^2 with 0 = 0 < 1, 0 == 0 (mod 2), and 0 + 0 - 1 = (-1)^3. %e A282091 a(13) = 1 since 13 = 2^2 + 0^2 + 3^2 + 0^2 with 2 > 0 < 3, 2 == 0 (mod 2), and 2 + 0 - 3 = (-1)^3. %e A282091 a(18) = 1 since 18 = 2^2 + 2^2 + 3^2 + 1^2 with 2 = 2 < 3, 2 == 2 (mod 2), and 2 + 2 - 3 = 1^3. %e A282091 a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1 < 2, 1 == 1 (mod 2), and 1 + 1 - 2 = 0^3. %e A282091 a(95) = 1 since 95 = 9^2 + 1^2 + 2^2 + 3^2 with 9 > 1 < 2, 9 == 1 (mod 2), and 9 + 1 - 2 = 2^3. %e A282091 a(479) = 1 since 479 = 15^2 + 7^2 + 14^2 + 3^2 with 15 > 7 < 14, 15 == 7 (mod 2), and 15 + 7 - 14 = 2^3. %e A282091 a(653) = 1 since 653 = 12^2 + 8^2 + 21^2 + 2^2 with 12 > 8 < 21, 12 == 8 (mod 2), and 12 + 8 - 21 = (-1)^3. %e A282091 a(1424) = 1 since 1424 = 8^2 + 0^2 + 8^2 + 36^2 with 8 > 0 < 8, 8 == 0 (mod 2), and 8 + 0 - 8 = 0^3. %e A282091 a(2576) = 0 since 2576 = 24^2 + 16^2 + 40^2 + 12^2 with 24 > 16 < 40, 24 == 16 (mod 2), and 24 + 16 - 40 = 0^3. %e A282091 a(2960) = 1 since 2960 = 24^2 + 8^2 + 32^2 + 36^2 with 24 > 8 < 32, 24 == 8 (mod 2), and 24 + 8 - 32 = 0^3. %t A282091 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; %t A282091 CQ[n_]:=CQ[n]=IntegerQ[CubeRoot[n]]; %t A282091 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x+y-z]&&Mod[x-y,2]==0,r=r+1],{y,0,Sqrt[n/3]},{x,y,Sqrt[n-y^2]},{z,y,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}] %Y A282091 Cf. A000118, A000290, A000578, A271518, A273429, A273432, A273458. %K A282091 nonn %O A282091 0,2 %A A282091 _Zhi-Wei Sun_, Feb 06 2017