This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282094 #27 Nov 03 2023 06:18:33 %S A282094 0,1,2,8,10,11,16,26,27,30,39,46,52,54,64,68,80,88,100,110,117,120, %T A282094 125,128,130,142,145,170,198,205,208,216,222,236,240,250,270,286,297, %U A282094 310,312,322,343,350,366,368,371,377,406,414,415,416,432,455,481 %N A282094 Larger member of a pair (x,y) which solves x^2 + y^2 = z^3 for nonnegative x, y and z. %C A282094 Values y such that x^2 + y^2 = z^3 has a solution 0 <= x <= y with integer x, y and z. %C A282094 Differs from A282093 because solutions with x=0 are admitted; (x,y) = (0,t^3) solves the equation with z = t^2. %F A282094 Equals A282093 union A000578. %e A282094 0^2 + 0^2 = 0^3, so 0 is in. 0^2 + 1^2 = 1^3, so 1 is in. 2^2 + 2^2 = 2^3, so 2 is in. 0^2 + 8^2 = 4^3, so 8 is in. 5^2 + 10^2 = 5^3, so 10 is in. %p A282094 isA282094 := proc(y) %p A282094 local x,z3 ; %p A282094 for x from 0 to y do %p A282094 z3 := x^2+y^2 ; %p A282094 if isA000578(z3) then %p A282094 return true ; %p A282094 end if; %p A282094 end do: %p A282094 return false ; %p A282094 end proc: %p A282094 for y from 0 to 800 do %p A282094 if isA282094(y) then %p A282094 printf("%d,",y) ; %p A282094 end if; %p A282094 end do: %t A282094 isA282094[y_] := If[IntegerQ[y^(1/3)], True, Module[{x, z3}, For[x = 1, x <= y, x++, z3 = x^2 + y^2; If[IntegerQ[z3^(1/3)], Return[True]]]; Return[False]]]; %t A282094 Reap[For[y = 0, y <= 800, y++, If[isA282094[y], Print[y]; Sow[y]]]][[2, 1]] (* _Jean-François Alcover_, Nov 03 2023, after _R. J. Mathar_ *) %o A282094 (Python) %o A282094 from sympy import factorint %o A282094 def is_cube(n): %o A282094 if n==0: return True %o A282094 return all(i%3==0 for i in factorint(n).values()) %o A282094 def ok(n): %o A282094 return any(is_cube(x**2 + n**2) for x in range(n + 1)) %o A282094 print([n for n in range(501) if ok(n)]) # _Indranil Ghosh_, Jun 30 2017 %o A282094 (PARI) is(n)=my(n2=n^2); for(x=0,n, if(ispower(n2+x^2,3), return(1))); 0 \\ _Charles R Greathouse IV_, Jun 30 2017 %Y A282094 Cf. A282093. %K A282094 nonn %O A282094 1,3 %A A282094 _R. J. Mathar_, Feb 06 2017