This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282109 #11 May 30 2019 08:58:52 %S A282109 17,21,25,29,34,38,42,46,51,55,59,63,66,68,70,74,78,83,84,87,91,95, %T A282109 100,116,129,136,145,152,161,168,177,184,197,204,213,220,229,236,245, %U A282109 252,257,259,263,264,267,271,272,273,280,289,296,305,312,325,332,336,341 %N A282109 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(i-j)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 4. %C A282109 All the palindromic numbers in base 4 with an odd number of digits belong to the sequence. %C A282109 Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits. %H A282109 Paolo P. Lava, <a href="/A282109/b282109.txt">Table of n, a(n) for n = 1..10000</a> %e A282109 83 in base 4 is 1103. If j = 2 (digit 0) we have 1*1 + 1*2 = 3 for the left side and 3*1 = 3 for the right one. %p A282109 P:=proc(n,h) local a,j,k: a:=convert(n, base, h): %p A282109 for k from 1 to nops(a)-1 do %p A282109 if add(a[j]*(k-j),j=1..k)=add(a[j]*(j-k),j=k+1..nops(a)) then %p A282109 RETURN(n); break: fi: od: end: seq(P(i,4),i=1..10^3); %Y A282109 A282107, A282108, A282110 - A282115. %K A282109 base,nonn,easy %O A282109 1,1 %A A282109 _Paolo P. Lava_, Feb 06 2017