A282111 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(i-j)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 6.
37, 43, 49, 55, 61, 67, 74, 80, 86, 92, 98, 104, 111, 117, 123, 129, 135, 141, 148, 154, 160, 166, 172, 178, 185, 191, 197, 203, 209, 215, 218, 222, 224, 230, 236, 242, 248, 255, 258, 261, 267, 273, 279, 285, 292, 294, 298, 304, 310, 316, 322, 329, 330, 335, 341
Offset: 1
Examples
304 in base 6 is 1224. If j = 2 (the first 2 from right) we have 2*1 + 1*2 = 4 for the left side and 4*1 = 4 for the right one.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n,h) local a,j,k: a:=convert(n, base, h): for k from 1 to nops(a)-1 do if add(a[j]*(k-j),j=1..k)=add(a[j]*(j-k),j=k+1..nops(a)) then RETURN(n); break: fi: od: end: seq(P(i,6),i=1..10^3);
Comments