A282116 Numbers k such that k-1/2*R(k) and k+1/2*R(k) are both positive squares, where R(k) is the digits reverse of k.
468, 4842, 27225, 235890, 21030930, 840827745
Offset: 1
Examples
(468 - 1/2*864)^(1/2) = (36)^(1/2) = 6 and (468 +1/2*864)^(1/2) = (900)^(1/2) = 30.
Programs
-
Maple
R:=proc(w) local x,y,z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q,k) local n; for n from 1 to q do if n>k*R(n) then if frac(sqrt(n-k*R(n)))=0 and frac(sqrt(n+k*R(n)))=0 then print(n); fi; fi; od; end: P(10^9,1/2);
Extensions
a(6) from Lars Blomberg, Jul 12 2017
Comments