This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282133 #35 Nov 21 2024 05:16:07 %S A282133 0,0,0,0,0,0,0,2,0,0,2,2,4,10,12,14,28,38,56,84,124,184,264,374,544, %T A282133 836,1190,1746,2544,3712,5410,7890,11470,16666,24436,35574,51892, %U A282133 75552,110124,160624,234162,341178,497058,725026,1056630,1540158,2244566,3271600 %N A282133 Number of maximal cubefree binary words of length n. %C A282133 A word is cubefree if it has no block within it of the form xxx, where x is any nonempty block. A cubefree word w is maximal if it cannot be extended to the right (i.e., both w0 and w1 end in cubes). %C A282133 It appears that a(n) ~ A028445(n-11). - _M. F. Hasler_, May 05 2017 %H A282133 Lars Blomberg, <a href="/A282133/b282133.txt">Table of n, a(n) for n = 1..59</a> %e A282133 For n = 8, the two maximal cubefree words of length 8 are 00100100 and its complement 11011011. %e A282133 The first few maximal cubefree words beginning with 1 are: %e A282133 [1, 1, 0, 1, 1, 0, 1, 1], %e A282133 [1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], %e A282133 [1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], %e A282133 [1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], %e A282133 [1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], %e A282133 [1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], %e A282133 [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0], %e A282133 [1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], %e A282133 [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1], %e A282133 [1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]. %e A282133 For those beginning with 0, take the complements. - _N. J. A. Sloane_, May 05 2017 %p A282133 # Maple code adapted from that in A286262 by _N. J. A. Sloane_, May 05 2017 %p A282133 isCubeFree:=proc(v) local n,L; %p A282133 for n from 3 to nops(v) do for L to n/3 do %p A282133 if v[n-L*2+1 .. n] = v[n-L*3+1 .. n-L] then RETURN(false) fi od od; true end; %p A282133 A282133:=proc(n) local s,m; %p A282133 s:=0; %p A282133 for m from 2^(n-1) to 2^n-1 do %p A282133 if isCubeFree(convert(m,base,2)) then %p A282133 if (not isCubeFree(convert(2*m,base,2))) and %p A282133 (not isCubeFree(convert(2*m+1,base,2))) then %p A282133 s:=s+2; fi; %p A282133 fi; %p A282133 od; s; end; %p A282133 [seq(A282133(n),n=0..18)]; %t A282133 CubeFreeQ[v_List] := Module[{n, L}, For[n = 3, n <= Length[v], n++, For[L = 1, L <= n/3, L++, If[v[[n - L*2 + 1 ;; n]] == v[[n - L*3 + 1 ;; n - L]], Return[False]]]]; True]; %t A282133 a[n_] := a[n] = Module[{s, m}, s = 0; For[m = 2^(n - 1), m <= 2^n - 1, m++, If[CubeFreeQ[IntegerDigits[m, 2]], If[!CubeFreeQ[IntegerDigits[2*m, 2]] && !CubeFreeQ[IntegerDigits[2*m + 1, 2]], s += 2]]]; s]; %t A282133 Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 08 2023, after Maple code *) %o A282133 (Python) %o A282133 def icf(s): # incrementally cubefree %o A282133 for l in range(1, len(s)//3 + 1): %o A282133 if s[-3*l:-2*l] == s[-2*l:-l] == s[-l:]: return False %o A282133 return True %o A282133 def aupton(nn, verbose=False): %o A282133 alst, cfs = [], set("0") %o A282133 for n in range(1, nn+1): %o A282133 cfsnew = set() %o A282133 an = 0 %o A282133 for c in cfs: %o A282133 maximal = True %o A282133 for i in "01": %o A282133 if icf(c+i): %o A282133 cfsnew.add(c+i) %o A282133 maximal = False %o A282133 if maximal: an += 2 %o A282133 alst, cfs = alst+[an], cfsnew %o A282133 if verbose: print(n, an) %o A282133 return alst %o A282133 print(aupton(30)) # _Michael S. Branicky_, Mar 18 2022 %Y A282133 Cf. A028445, A282317. %Y A282133 For these numbers halved, see A286270. %K A282133 nonn %O A282133 1,8 %A A282133 _Jeffrey Shallit_, Feb 06 2017 %E A282133 a(36)-a(48) from _Lars Blomberg_, Feb 09 2019