A282137 Expansion of (24x^2-10x-1)/(16x^3-16x^2+x-1).
1, 11, -29, -189, 451, 3011, -7229, -48189, 115651, 771011, -1850429, -12336189, 29606851, 197379011, -473709629, -3158064189, 7579354051, 50529027011, -121269664829, -808464432189, 1940314637251, 12935430915011, -31045034196029, -206966894640189
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-16,16).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,257,0,0,0,-256}, {1, 11, -29, -189, 451, 3011, -7229, -48189}, 24] LinearRecurrence[{1, -16, 16}, {1, 11, -29}, 24]
-
PARI
Vec((1 - 2*x)*(1 + 12*x) / ((1 - x)*(1 + 16*x^2)) + O(x^30)) \\ Colin Barker, Feb 07 2017
-
Python
print([[1, 11, -29, -189][n%4] + [450, 3000, -7200, -48000][n%4]*(256**(n//4)-1)//255 for n in range(24)])
Formula
a(k+8) - 257 * a(k+4) + 256 * a(k) = 0, for k >= 0. - Altug Alkan, Feb 07 2017
G.f.: (24*x^2-10*x-1)/(16*x^3-16*x^2+x-1).
From Colin Barker, Feb 07 2017: (Start)
a(n) = (-13 + (15+25*i)*(-4*i)^n + (15-25*i)*(4*i)^n) / 17 where i=sqrt(-1).
a(n) = a(n-1) - 16*a(n-2) + 16*a(n-3) for n>2.
(End)
Comments