A282143 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j..k}{(i-j+1)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 2.
3, 6, 9, 12, 15, 18, 19, 24, 25, 30, 33, 36, 38, 45, 48, 50, 51, 60, 63, 66, 69, 72, 75, 76, 81, 87, 90, 96, 100, 102, 105, 117, 120, 126, 129, 131, 132, 138, 143, 144, 150, 152, 153, 162, 165, 174, 179, 180, 189, 192, 193, 195, 200, 204, 205, 210, 219, 231, 234
Offset: 1
Examples
143 in base 2 is 10001111. If we split the number in 10001 and 111 we have 1*1 + 0*2 + 0*3 + 0*4 + 1*5 = 6 for the left side and 1*1 + 1*2 + 1*3 = 6 for the right one.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n,h) local a,j,k: a:=convert(n, base, h): for k from 1 to nops(a)-1 do if add(a[j]*(k-j+1),j=1..k)=add(a[j]*(j-k),j=k+1..nops(a)) then RETURN(n); break: fi: od: end: seq(P(i,2),i=1..10^3);
Comments