A282148 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j..k}{(i-j+1)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 7.
8, 16, 24, 32, 40, 48, 51, 56, 59, 67, 75, 83, 99, 102, 110, 112, 118, 153, 155, 168, 198, 211, 224, 254, 267, 280, 297, 310, 323, 336, 344, 346, 354, 357, 362, 370, 392, 397, 400, 405, 413, 443, 456, 469, 499, 512, 525, 542, 555, 568, 581, 598, 611, 624, 641, 654
Offset: 1
Examples
641 in base 7 is 1604. If we split the number in 16 and 04 we have 6*1 + 1*2 = 8 for the left side and 0*1 + 4*2 = 8 for the right one.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n,h) local a,j,k: a:=convert(n, base, h): for k from 1 to nops(a)-1 do if add(a[j]*(k-j+1),j=1..k)=add(a[j]*(j-k),j=k+1..nops(a)) then RETURN(n); break: fi: od: end: seq(P(i,7),i=1..10^3);
Comments