A282151 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j..k}{(i-j+1)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 10.
11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 110, 113, 124, 135, 146, 157, 168, 179, 201, 204, 215, 220, 226, 237, 248, 259, 306, 311, 317, 328, 330, 339, 402, 408, 419, 421, 440, 512, 531, 550, 603, 622, 641, 660, 713, 732, 751, 770, 804, 823, 842, 861, 880, 914, 933
Offset: 1
Examples
If we split 2039 in 203 and 9 we have 3*1 + 0*2 + 2*3 = 9 for the left side and 9*1 = 9 for the right one.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n,h) local a,j,k: a:=convert(n, base, h): for k from 1 to nops(a)-1 do if add(a[j]*(k-j+1),j=1..k)=add(a[j]*(j-k),j=k+1..nops(a)) then RETURN(n); break: fi: od: end: seq(P(i,10),i=1..10^3);
Comments