cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282171 Single-digit numbers in the order in which they first appear in the decimal expansion of e, followed by the two-digit numbers in the order in which they appear, then the three-digit numbers, and so on.

Original entry on oeis.org

2, 7, 1, 8, 4, 5, 9, 0, 3, 6, 27, 71, 18, 82, 28, 81, 84, 45, 59, 90, 52, 23, 35, 53, 36, 60, 87, 74, 47, 13, 26, 66, 62, 24, 49, 97, 77, 75, 57, 72, 70, 93, 69, 99, 95, 96, 67, 76, 40, 63, 30, 54, 94, 38, 21, 17, 78, 85, 25, 51, 16, 64, 42, 46, 39, 91, 19
Offset: 1

Views

Author

Bobby Jacobs, Feb 07 2017

Keywords

Comments

Note that (except for 0 itself), numbers may not begin with 0. So that when we reach ...459045..., this contributes 90 to the sequence but not "04". - N. J. A. Sloane, Feb 08 2017

Examples

			From _Michael De Vlieger_, Feb 09 2017: (Start)
Consider the decimal expansion of e=2.718281828459045235360...
The first 4 terms are 2,7,1,8 since these single digits appear in that order above. We do not encounter a different digit till we reach 4,5,9,0, thus these follow the first four in the sequence. We encounter 3 next, and finally 6 and have found all the single digits in the expansion.
a(11)=27 because we find the two-digit group "27" first, followed by a(12)=71, etc. until we exhaust the 90 possible two-digit groups that do not start with a zero.
a(101)=271 because we find the three-digit group "271" first, followed by a(102)=718, etc. until we exhaust the 900 possible 3-digit groups that do not have leading zeros, etc. (End)
		

Crossrefs

Cf. A001113, A105177 (analog for Pi), A105178.

Programs

  • Mathematica
    e = First@ RealDigits@ N[E, 10^6]; MapIndexed[10^(First@ #2 - 1) - 1 - Boole[First@ #2 == 1] + Flatten@ Values@ KeySort@ PositionIndex@ #1 &, Table[SequencePosition[e, IntegerDigits@ k][[1, 1]], {n, 4}, {k, If[n == 1, 0, 10^(n - 1)], 10^n - 1}]] (* Michael De Vlieger, Feb 09 2017, Version 10.1 *)

Extensions

Edited by N. J. A. Sloane, Feb 08 2017
a(5), a(6), a(9), and a(10) inserted by Bobby Jacobs, Feb 09 2017
More terms from Michael De Vlieger, Feb 09 2017