This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282179 #20 Feb 16 2025 08:33:40 %S A282179 0,1,9,52,283,1561,8930,53411,334785,2199034,15119621,108644581, %T A282179 814474176,6358910949,51615342685,434865155292,3796991928727, %U A282179 34308796490005,320379418256794,3087939032182127,30683582797977749,313977721545709002,3305220440084030809,35759627532783842561 %N A282179 E.g.f.: exp(exp(x) - 1)*(exp(3*x) - 2*exp(x) + 1). %C A282179 Stirling transform of the cubes (A000578). %C A282179 Exponential convolution of the sequences A000110 and A058481 (with a(0) = 0). %H A282179 Alois P. Heinz, <a href="/A282179/b282179.txt">Table of n, a(n) for n = 0..572</a> %H A282179 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A282179 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A282179 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a> %F A282179 a(n) = Sum_{k=0..n} Stirling2(n,k)*A000578(k). %F A282179 a(n) = A000110(n) + A005494(n) - A186021(n+1). %e A282179 E.g.f.: A(x) = x/1! + 9*x^2/2! + 52*x^3/3! + 283*x^4/4! + 1561*x^5/5! + 8930*x^6/6! + ... %p A282179 b:= proc(n, m) option remember; `if`(n=0, %p A282179 m^3, m*b(n-1, m)+b(n-1, m+1)) %p A282179 end: %p A282179 a:= n-> b(n, 0): %p A282179 seq(a(n), n=0..27); # _Alois P. Heinz_, Jul 15 2022 %t A282179 Range[0, 23]! CoefficientList[Series[Exp[Exp[x] - 1] (Exp[3 x] - 2 Exp[x] + 1), {x, 0, 23}], x] %t A282179 Table[Sum[StirlingS2[n, k] k^3, {k, 0, n}], {n, 0, 23}] %t A282179 Table[Sum[Binomial[n, k] BellB[n-k] (3^k - 2), {k, 1, n}], {n, 0, 23}] %t A282179 Table[BellB[n+3] - 3*BellB[n+2] + BellB[n], {n, 0, 23}] (* _Vaclav Kotesovec_, Aug 06 2021 *) %Y A282179 Cf. A000110, A000578, A005494, A033452, A058481, A186021. %K A282179 nonn %O A282179 0,3 %A A282179 _Ilya Gutkovskiy_, Feb 08 2017