A282283 Recursive 2-parameter sequence allowing calculation of the Euler Totient function.
0, 1, -1, 1, 2, -4, 2, -4, 10, -6, -2, 2, 6, -16, 10, 4, -6, 8, -10, 4, -10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2, 12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6, -18, 52, -34, -16, 18, -18, 34, -36, 20, 10, -6, -2, 4, -28, 18, 8
Offset: 0
Examples
The first few rows are: 0, 1; -1, 1; 2, -4, 2; -4, 10, -6, -2, 2; 6, -16, 10, 4, -6, 8, -10, 4; -10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2; 12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6;
Programs
-
Mathematica
U[n_, m_] := U[n, m] = If[n > 1, U[n - 1, n*(n - 1)/2 - m]*(-1)^n - U[n - 1, m], 0] U[1, m_] := U[1, m] = If[m == 0, 1, 0] Q[n_, m_] := U[n, m - 2] - 2*U[n, m - 1] + U[n, m] nu[n_]:=(n-1)*n/2+2-n a[n_, m_] := a[n, m] = If[(m < 0) || (nu[n] < m), 0, a[n - 1, m - n + 1] - a[n - 1, m] - a[n - 1, nu[n - 1]]*Q[n - 1, m]] a[1, m_] := a[1, m] = If[m == 1, 1, 0] Table[Table[a[n, m], {m, 0, nu[n]}], {n, 1, 20}] Table[a[n, nu[n]], {n, 1, 50}]
Comments