cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282290 Expansion of (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j), where mu() is the Moebius function (A008683).

This page as a plain text file.
%I A282290 #7 Feb 16 2025 08:33:41
%S A282290 0,0,0,0,0,0,1,1,0,1,2,3,1,1,3,3,1,1,3,4,1,3,3,4,1,2,3,4,2,3,6,4,3,3,
%T A282290 4,5,1,5,7,6,3,3,7,4,3,4,7,6,3,4,5,7,2,3,5,7,4,3,4,5,4,4,7,6,4,4,8,6,
%U A282290 4,6,7,7,2,5,7,7,2,4,9,5,4,4,7,8,4,5,9,9,4,4,7,7,5,6,8,8,5,5,8,6,4,6,8,7,5,6,6,6,2,5,10
%N A282290 Expansion of (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j), where mu() is the Moebius function (A008683).
%C A282290 Number of ways of writing n as a sum of a proper prime power (A246547) and a squarefree number > 1 (A144338).
%C A282290 Conjecture: a(n) > 0 for all n > 8.
%H A282290 Ilya Gutkovskiy, <a href="/A282290/a282290.pdf">Extended graphical example</a>
%H A282290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H A282290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Squarefree.html">Squarefree</a>
%F A282290 G.f.: (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j).
%e A282290 a(19) = 4 because we have [16, 3], [15, 4], [11, 8] and [10, 9].
%t A282290 nmax = 110; CoefficientList[Series[Sum[Sign[PrimeOmega[i] - 1] Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}] Sum[MoebiusMu[j]^2 x^j, {j, 2, nmax}], {x, 0, nmax}], x]
%Y A282290 Cf. A005117, A008683, A098983, A144338, A246547.
%K A282290 nonn
%O A282290 0,11
%A A282290 _Ilya Gutkovskiy_, Feb 11 2017