cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282292 Coefficients in q-expansion of E_10^2, where E_10 is the Eisenstein series A013974.

This page as a plain text file.
%I A282292 #19 Feb 16 2025 08:33:41
%S A282292 1,-528,-201168,61114944,20946935856,1443146395680,46053422547264,
%T A282292 861726789128832,10894843149545520,102119072037503664,
%U A282292 755968133350219680,4623420033182073024,24151660069581371712,110516194189880866464,451789196756619249792
%N A282292 Coefficients in q-expansion of E_10^2, where E_10 is the Eisenstein series A013974.
%H A282292 Seiichi Manyama, <a href="/A282292/b282292.txt">Table of n, a(n) for n = 0..1000</a>
%H A282292 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>
%t A282292 terms = 15;
%t A282292 E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
%t A282292 E10[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *)
%Y A282292 Cf. A281374 (E_2^2), A008410 (E_4^2), A280869 (E_6^2), A282012 (E_8^2), this sequence (E_10^2).
%K A282292 sign
%O A282292 0,2
%A A282292 _Seiichi Manyama_, Feb 11 2017