cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282304 a(n) is the least k > 0 such that A282291(n+k) != A282291(n) * A282291(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 2

Views

Author

Rémy Sigrist, Feb 11 2017

Keywords

Comments

The sequence can be interpreted like this: for any n>1, the b(n) terms of A282291 starting at index n equal the first b(n) terms of A282291, up to a scaling factor of A282291(n).
The presence of huge values in this sequence accounts for the fractal nature of A282291.
The first records in this sequence are:
n a(n) A282291(n)
------ ------ ----------
2 1 2
8 5 5
14 11 7
34 31 11
96 90 13
193 185 17
386 383 19
770 767 23
1538 1535 29
3074 3071 31
14647 11105 37
30533 29455 41
60824 30062 43
122349 91331 47
245225 121951 53
688293 367238 59
The occurrence of a prime number greater than 3 in A282291 seems to set a new record in this sequence.
This sequence has a similar fractal nature as A282291; yet here, repeated portions are identical (not scaled).

Crossrefs

Cf. A282291.

Programs

  • Mathematica
    a = {1}; Do[k = 1; While[Or[MemberQ[a, k], Nand[Divisible[#2, #1], CoprimeQ[#1, #2/#1]]] & @@ Sort@ # &@ {k, Last@ a}, k++]; AppendTo[a, k], {n, 300}]; Table[k = 1; While[a[[n + k]] == a[[n]] a[[k + 1]], k++]; k, {n, 2, 120}] (* Michael De Vlieger, Feb 12 2017 *)